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Abstract

The main results of this paper were found while addressing the question: what do the
“nice” bases for the irreducible representations of semisimple Lie algebras look like? Using
the Gelfand-Zetlin bases for the irreducible representations of gl(n, C) as our model, we take a
combinatorial approach to this question by associating a certain kind of directed graph to each
weight basis for an irreducible representation of a semisimple Lie algebra. These directed graphs
are of combinatorial interest in their own right, and we show that these are connected, rank
symmetric, rank unimodal, and strongly Sperner posets. We will view these posets as discrete
invariants on the set of all weight bases for a given representation. In this way we split the set
of weight bases into smaller subsets. We will take particular interest in the smallest subsets,
that is, those containing essentially only one weight basis (and its scalar multiples). We call
such a basis a solitary basis. We show that the Gelfand-Zetlin bases are solitary, and then we
describe solitary bases for the fundamental representations of sp(2n, C) and so(2n + 1, C), and
for the adjoint representations of the simple Lie algebras. These modest but somewhat striking
preliminary results also suggest that there could be a deep relationship between solitary bases
and the combinatorial structure and relative “efficiency” of their associated posets. One other
compelling curiosity: we will see that the coefficients for the actions of the generators for the
Lie algebras on these solitary bases are rational numbers.

Résumé

La question centrale de cet article est d’étudier quelles formes ont les bases intéressantes
des représentations d’algèbre de Lie semi-simples. Les résultats présentés ici sont motivés par
cette question et nous nous inspirons aussi de la construction des bases de Gelfand-Zetlin pour
les représentations irréductibles de gl(n, C). Notre approche est combinatoire: nous associons
un certain graphe dirigé à chacune des bases pondérées d’une représentation irréductible d’une
algèbre semi-simple. Ces graphes dirigés ont un intérêt combinatoire comme tel; nous montrons
que ce sont des ordres partiels connexes, gradués symmétriques, unimodals et fortement Sperner.
Nous voyons que ces ordres partiels peuvent être considérés comme des invariants sur l’ensemble
des bases pondérées d’une représentation donnée. De cette façon nous partitionnons l’ensemble
des bases pondérées en classes. Nous portons ici un intérêt particulier aux classes contenant
une seule base pondérée et ses multiples scalaires. Nous appelons une telle base solitaire. Nous
montrons que les bases de Gelfand-Zetlin sont solitaires. Nous décrivons aussi les bases solitaires
des représentations fondamentales de sp(2n, C) et so(2n+1, C), et des représentations adjointes
des algèbres de Lie semi-simples. Ces résultats modestes sont des préliminaires frappants et
ils suggèrent la possibilité d’une relation plus profonde entre d’une part les bases solitaires, et
d’autre part la structure combinatoire et “l’efficacité” relative de leurs ordres partiels associés.
Nous voyons aussi que l’action sur les bases solitaires des générateurs de l’algèbre de Lie est à
coefficients rationnel; ceci est une autre curiosité intéressante.

1 Introduction
The Lie algebra gl(n, C) can be thought of as an algebra of n × n matrices, and one can view

gl(n− 1, C) as the subalgebra inside gl(n, C) consisting of those n× n matrices whose last column
and last row are all zeros. Let V be an irreducible representation of gl(n, C). In 1950, Gelfand

∗Some of the results in this paper are contained in the author’s doctoral thesis written under the supervision of
Robert A. Proctor.
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and Zetlin explicitly described a canonical basis for V that “respects the chain of subalgebras”
gl(1, C) ⊂ gl(2, C) ⊂ · · · ⊂ gl(n, C) ([GZ]; see [NT] for another derivation). The uniqueness of this
basis follows from the fact that any gl(n − 1, C)-irreducible component of V (regarded now as a
gl(n− 1, C)-module via the induced action) appears at most once in the decomposition of V .

This construction by Gelfand and Zetlin is the prototype for what we call an explicit construction
of a representation of a semisimple Lie algebra. Such an explicit construction consists of a set of
objects which freely generate a vector space of appropriate dimension, together with a procedure or
recipe for acting on these objects with generators from the Lie algebra. In addition, we require that
this procedure have no recursive calculations (that is, it should immediately specify the coefficients
for the actions of the generators).

Our constructions of the fundamental representations of sp(2n, C) in [Don1] appear to form the
first “non-routine” infinite family of explicitly constructed representations of simple Lie algebras on
weight bases found since the Gelfand-Zetlin constructions for gl(n, C). Our symplectic constructions
are realized on two infinite families of distributive lattices, which we have called the “KN” and “De
Concini” symplectic lattices. (These are so named because we originally borrowed the labels of
Kashiwara and Nakashima [KN] and of De Concini [DeC] to construct these lattices.) We have also
constructed the fundamental representations of so(2n+1, C) on two infinite families of distributive
lattices that are odd orthogonal analogs of the symplectic lattices in a certain sense.

In Section 3 we will describe how to associate a certain directed graph (called a “supporting
diagram”) to each weight basis for a representation of a semisimple Lie algebra by viewing the
representing matrices for the generators of the Lie algebra as “incidence matrices.” This allows us
to visualize the differences between weight bases and to bring combinatorial methods to bear on
the problem of constructing representations. For example, in order to construct the fundamental
representations of sp(2n, C) and so(2n + 1, C) in [Don1], we reversed the procedure of Section 3:
we first found the directed graphs (distributive lattices in these cases) and then worked backwards
to produce the bases and the actions.

Recently we realized that the Gelfand-Zetlin basis is unique in another sense: the only other
bases with the same supporting diagram are its scalar relatives. (In the language of Section 3, we
say this basis is solitary.) This led us to consider the question: are the bases associated to the KN
and De Concini symplectic and odd orthogonal lattices unique in this same sense? The answer is
yes; for the precise statement of this result see Section 4. There we will also say how our pursuit of
this question has improved our understanding of why in each case there are two supports that seem
to work equally well. In the symplectic case, we will also say how to locate crystal graphs inside
each support in order to see that corresponding KN and De Concini lattices have the same number
of edges (so they are “equally efficient”). We have also begun to build a small stock of examples of
diagrams for other algebras, and we discuss these in Section 4 as well. Most notably among these,
we have found all possible “efficient” weight bases for the adjoint representations of the simple Lie
algebras. The bases we produce for the fundamental representations of sp(2n, C) and so(2n+1, C),
and for the adjoint representations, have one other salient feature: the coefficients for the actions
are positive, rational numbers.

Those who are comfortable with the language of posets and lattices, and who are familiar with
the representation theory of semisimple Lie algebras as in [Hum], may find it easier to skip ahead
to Section 3 and refer back to Section 2 as necessary.

2 Definitions and Notation
In this section, we define the main combinatorial structures we will be working with, and briefly
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review some pertinent facts about representations of semisimple Lie algebras. Let P be a poset
(partially ordered set) and let x and y be elements of P . We write x → y if x is covered by y in
P (i.e. x ≤ z ≤ y in P implies that x = z or z = y). The Hasse diagram (or order diagram) of
a poset P is the directed graph whose nodes are the elements of P and whose directed edges are
given by the covering relations in P . We will not usually bother to distinguish a poset from its
Hasse diagram. If k ≥ 1, the k-element chain [k] is the totally ordered set {1 < 2 < · · · < k}. The
dual of a poset P is the set P ∗ := {x∗}x∈P together with the partial ordering y∗ ≤ x∗ if and only
if x ≤ y in P .

A ranked poset of length l is a partially ordered set P together with a partition P = ∪l
i=0Pi

into l + 1 ranks Pi, 0 ≤ i ≤ l, such that elements of Pi cover only elements in Pi−1. Define the
rank function ρ : P −→ {0, . . . , l} by ρ(x) := i if x ∈ Pi. A ranked poset P is rank symmetric
if |Pi| = |Pl−i| for 0 ≤ i ≤ l. A ranked poset is rank unimodal if there is an m such that
|P0| ≤ |P1| ≤ · · · ≤ |Pm| ≥ |Pm+1| ≥ · · · ≥ |Pl|. It is strongly Sperner if for every k ≥ 1, the largest
union of k antichains is no larger than the largest union of k ranks. A ranked poset is Peck if it is
rank symmetric, rank unimodal, and strongly Sperner.

A lattice L is a poset such that any two elements x and y of L have a least upper bound (called
the join of x and y, and denoted x∨ y) and a greatest lower bound (called the meet of x and y, and
denoted x ∧ y). Notice that a lattice is necessarily connected and has a unique maximal element
and a unique minimal element. A lattice L is modular if it is ranked and its rank function satisfies
ρ(x) + ρ(y) = ρ(x ∨ y) + ρ(x ∧ y) for all x and y in L. One can see that a lattice L is modular if
and only if for elements x and y of L we have

x ∧ y → x and x ∧ y → y ⇐⇒ x → x ∨ y and y → x ∨ y.

This follows from Proposition 3.3.2 of [Sta], and says in effect that modular lattices have no “open
vees.” A lattice L is distributive if for all x, y, and z in L we have x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). It is not hard to see that distributive lattices are modular.

A subset T ⊆ P is an order ideal of P if y ∈ T and x ≤ y ⇒ x ∈ T . The poset J(P ) of all
order ideals of P ordered by inclusion is always a distributive lattice. If L is a distributive lattice,
an element x ∈ L is join irreducible if it covers exactly one other element. If P is the poset of join
irreducibles of L (with the induced order from L), then L = J(P ). So J(P ) = J(Q) if and only if
P = Q. A distributive lattice L = J(P ) is ranked of length |P |, with Li = {T ∈ J(P ) : |T | = i},
0 ≤ i ≤ |P |.
Some distributive lattices for Section 4. Let N be a positive integer and let λ be a shape with
no more than N −1 rows. (A “shape” is a collection of boxes arranged into left-justified rows, with
each row having at least as many boxes as the row below it.) Define L(λ, N) to be the distributive
lattice of semistandard Young tableaux of shape λ and with entries from {1, 2, . . . , N}, ordered by
reverse componentwise comparison. If λ is a column of length k, we set L(k, N − k) := L(λ, N).

It can be seen that L(k, N − k) = J([k] × [N− k]), the distributive lattice of order ideals on
this product of chains. We can view L(k, N − k) as a distributive lattice of partitions (ordered by
inclusion) as follows. For positive integers m and n, we define an (m,n) partition to be an m-tuple
τ such that n ≥ τ1 ≥ · · · ≥ τm ≥ 0. That is, the partition τ fits inside an m × n box. The (n, m)
conjugate partition τ ′ is obtained by “flipping” the partition τ across its main diagonal. In other
words, τ ′i := max{j : τj ≥ i} for 1 ≤ i ≤ n. Let 1 ≤ k ≤ N − 1, and let T be a tableau in
L(k, N − k), thought of as a k-tuple (T1, . . . , Tk) such that 1 ≤ T1 < · · · < Tk ≤ N . We associate a
(k,N − k) partition τ to this tableau T by the rule τi = N − k + i− Ti.

Following [RS], a (k, N−k) partition τ is Andrews if τi−τ ′i ≤ N−2k for 1 ≤ i ≤ d where d2 is the
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size of the Durfee square of τ , viz. d = max{i : i ≤ τi} = max{j : j ≤ τ ′j}. Define Andrews(k, N−k)
to be the distributive lattice of Andrews partitions in L(k, N − k). When N = 2n and 1 ≤ k ≤ n,
let LKN

C (k, 2n− k) := Andrews(k, 2n− k). Let τ̃ be the “middle” of τ , formed by removing the first
n− k and last n− k columns of the Ferrers diagram for τ . More precisely, τ̃ is the (k, k) partition
whose conjugate τ̃ ′ is given by τ̃ ′ = (τ ′n−k+1, . . . , τ

′
n). Let the symplectic lattice LDeC

C (k, 2n− k) be
the distributive lattice of partitions τ in L(k, 2n− k) such that τ̃ ′ is a (k, k) Andrews partition. In
[Don2], we define the two “odd orthogonal” analogs to these symplectic lattices, which we denote
LKN

B (k, 2n + 1− k) and LDeC
B (k, 2n + 1− k).

A tableau T is covered by a tableau U in L(λ, N) if U is obtained from T by changing an
i + 1 entry in T to an i, where 1 ≤ i ≤ N − 1. Attach the “color” i to the edge T → U in the
Hasse diagram for L(λ, N). Let N = 2n and let 1 ≤ k ≤ n. The lattices LKN

C (k, 2n − k) and
LDeC

C (k, 2n − k) are distributive sublattices of L(k, 2n − k), and so “inherit” its edge colors. Now
recolor the edges of the symplectic lattices by changing an edge of color i to an edge of color 2n− i

whenever n + 1 ≤ i ≤ 2n− 1.
Representations of semisimple Lie algebras. To fix notation, we give a quick review of
some of the main definitions and results concerning representations of semisimple Lie algebras.
Following chapter 3 of [Hum] let Φ be a root system of rank n in Rn. Let ∆ = {α1, . . . , αn} be a
choice of simple roots. Let Φ̌ be the dual root system, with simple roots ∆̌ = {α̌1, . . . , α̌n}. Let
{ω1, . . . , ωn} be the associated fundamental weights, defined by (ωi, α̌j) = δij , where (·, ·) denotes
the inner product on Rn. Let Λ denote the lattice of weights, that is, the Z-linear combinations of
the fundamental weights. A weight λ ∈ Λ is said to be dominant if λ =

∑
miωi, with mi ≥ 0. Let

ω0 := 0 be the zero weight.
Let L be the complex semisimple Lie algebra associated to this root system. Recall that L has 3n

generators {xi, yi, hi}n
i=1 known as the Chevalley generators, and these satisfy the Serre relations

([Hum], pp. 96, 99). The subalgebra H spanned by {h1, . . . , hn} is called a Cartan subalgebra of
L. A representation V of L is a (complex) vector space V together with a map of Lie algebras
φ : L → gl(V ). This map makes the vector space V into an L-module. We use the lower case xi,
yi, and hi when we are thinking of the generators as elements of L, and the upper case Xi, Yi, and
Hi when we are thinking of the images of the generators in gl(V ).

In this abstract, we will be concerned only with finite-dimensional representations. Let V be
a finite-dimensional representation of L, with φ : L → gl(V ). Following chapter 6 of [Hum], let
µ ∈ Λ, and define the weight space Vµ of V by

Vµ := {v ∈ V | Hi.v = (µ, α̌i)v for all 1 ≤ i ≤ n},

where Hi = φ(hi). Then it can be seen that V is a (vector space) direct sum of its weight spaces,
so that H acts diagonally on V . An element v ∈ Vµ is said to have weight µ, and we let wt(v) := µ.
A basis for V which respects this decomposition is called a weight basis. We say that two weight
bases are multiscalar equivalent if (after an appropriate reordering) they differ by a diagonal change
of basis matrix. If V is irreducible, then there is a vector v+ ∈ V (unique up to nonzero scalar
multiplication) such that Xi.v

+ = 0 for all i. Moreover, v+ has weight λ, where λ is dominant,
and we call λ the highest weight for the representation V . If µ is a weight for this irreducible
representation (i.e. Vµ 6= 0), then λ − µ =

∑
kiαi, where each ki is a non-negative integer. The

weight diagram for V is the set Π(λ) := {µ ∈ Λ|Vµ 6= 0}, together with the partial order µ ≤ ν

in Π(λ) if and only if ν − µ =
∑

kiαi, where each ki is a non-negative integer. One of the central
results of [Hum] (Corollary 21.2, p. 113) is that the irreducible representations of L are indexed
by dominant weights in the following sense: to every dominant weight there is an irreducible
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representation V with highest weight λ. Moreover, if V and W are irreducible and have highest
weight λ, then V and W are isomorphic as L-modules.

When L is simple of rank n, it will be convenient to identify L with its root system Xn, where
X ∈ {A,B, C, D, E, F,G}. We will let L(λ) denote the irreducible representation of L with highest
weight λ. (So, for example, for us Cn(ωk) denotes the irreducible representation of the Lie algebra
Cn with highest weight ωk.) We will also refer to the classical Lie algebras by their usual names by
identifying An with sl(n + 1, C), Bn with so(2n + 1, C), Cn with sp(2n, C), and Dn with so(2n, C).
The following are pictures of the Dynkin diagrams for An, Bn, and Cn, respectively. Here, α1, . . . , αn

are simple roots.

An u u u u uα1 α2 α3 αn−1 αn

Bn u u u u u
��
HH

α1 α2 α3 αn−1 αn

Cn u u u u u��HH
α1 α2 α3 αn−1 αn

3 Representation Diagrams and Supporting Diagrams
We are now ready to describe in precise terms the combinatorial setting for the main results of

Section 4. Let Φ be a root system of rank n, and let L be the associated complex semisimple Lie
algebra. Let {vt}t∈I be any weight basis for a representation V of L of dimension d. (Here, I is an
index set of order |I| = d = dim(V ).) With respect to a suitable ordering on these basis vectors,
we can think of the operators Xi, Yi, and Hi in gl(V ) as d × d matrices. Now think of each basis
vector as a vertex. The pairs of matrices {Xi, Yi}n

i=1 specify incidence relations between vertices as
follows: place a directed edge of “color” i from the basis vector vs to the basis vector vt if either the
(t, s)-entry of the matrix Xi is non-zero, or the (s, t)-entry of the matrix Yi is non-zero, or both are
non-zero. Attach two coefficients to each directed edge of color i: an “x-coefficient” corresponding
to the appropriate matrix entry for the generator Xi, and a “y-coefficient” corresponding to the
appropriate matrix entry for Yi. Lemma 20.1 of [Hum] states that if a vector v has weight µ in
a representation V , then Xi.v ∈ Vµ+αi and Yi.v ∈ Vµ−αi . Thus any two vertices in our directed
graph can have at most one edge between them, and in addition, the directed graph will have no
loops. We call this directed graph with colored edges and with coefficients attached to each edge
a representation diagram for the representation V of L. This diagram (which we normally denote
by P ) encodes all the information for the actions of the generators Xi and Yi on V with respect
to the basis {vt}t∈I , and we say that P realizes the representation V . The supporting diagram (or
just the support) of a representation diagram P (or of an associated weight basis {vt}t∈I) is the
edge-colored directed graph S[P ] obtained from P by ignoring the coefficients on the edges.

We make the following observations. First, notice that the number of supports for a given
representation is finite. In addition, one can see that if two bases are multiscalar equivalent (see
Section 2), and have representation diagrams P and Q respectively, then their supporting diagrams
S[P ] and S[Q] are the same. Moreover, the product of the “x” and “y” coefficients for an edge
in P equals the product of coefficients on the corresponding edge in Q. It is not hard to show
that any support for a representation V of L is a ranked poset. Next, note that the connected
components of the diagram correspond to subspaces of V that are stable under the action of L (but
these need not be irreducible). So when V is irreducible, it follows that any supporting diagram
will be connected. That these posets are Peck follows by restricting to the action of a “principal
sl(2, C)” inside L (see [Pr2]) and applying Proctor’s “Peck Poset Theorem” [Pr1]. So we get:
Proposition 3.1 If V is an irreducible representation of L, then any support for V is the Hasse
diagram for a connected, rank symmetric, rank unimodal, and strongly Sperner poset.
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One antecedent for this notion of a representation diagram can be found in [Pr1], [Pr2], and [Pr5],
where Proctor was mainly interested in sl(2, C) actions. As an example, he proved that the lattices
L(λ, n) are Peck [Pr5] by using the fact that these lattices can be viewed as representation diagrams
for the irreducible representations of gl(n, C) due to the construction of Gelfand and Zetlin [GZ].

Let W(V ) be the collection of all possible weight bases for a representation V of L. Let M(V )
be the set of all equivalence classes of multiscalar equivalent weight bases. Let D(V ) and S(V )
respectively denote the collections of representation diagrams and supporting diagrams for V . We
have found the following picture to be a convenient way to keep track of these different notions:

W

D

M

S
���*

H
HHj

HHHj

���*

For example, the arrow D → S indicates passing from a representation diagram to the associated
supporting diagram. Evidently, the diagram commutes.
Definitions 3.2 A supporting diagram S (or any associated weight basis or representation dia-
gram) for V is edge-minimizing if the supporting diagram for any other weight basis for V has at
least as many edges as S. Define the efficiency of a supporting diagram (or any associated weight
basis or representation diagram) to be the number of edges in the support. Call a supporting
diagram S (or any associated weight basis or representation diagram) solitary if the weight basis
associated to S is unique up to multiscalar equivalence (i.e. there is only one equivalence class in
M(V ) with support S).

Any representation has an edge-minimizing weight basis, but there is no guarantee that it will
have a solitary basis. Minimizing the number of edges in a supporting diagram is similar in spirit
to making the representing matrices {Xi, Yi}n

i=1 as collectively sparse as possible. However, these
two issues are distinct, since it is possible for an edge in a representation diagram to have one zero
coefficient and one non-zero coefficient.

Following our observations above about multiscalar equivalent weight bases, we see that if two
representation diagrams have the same solitary support, then the products of coefficients on cor-
responding edges are the same. So we say that the “products of edge-coefficients are fixed” for
solitary supports. In all the examples of solitary supports that we know of, these fixed products
are positive, rational numbers.

One can obtain solitary bases for an irreducible representation of a (non-simple) semisimple Lie
algebra L by “tensoring” together solitary bases for certain irreducible representations of the simple
Lie algebras that comprise L. More precisely, let V and W be irreducible representations of two
semisimple Lie algebras K and L, respectively. Then V and W are irreducible representations of
K ⊕ L (where we let K act trivially on W and L act trivially on V ), and so is V ⊗W . Moreover,
all of the irreducible representations of K ⊕ L can be realized in this way. Suppose {vs}s∈I and
{wt}t∈J are solitary bases for V and W respectively. Recently we have shown that the weight basis
{vs ⊗ wt}(s,t)∈I×J is a solitary basis for the irreducible representation V ⊗W of K ⊕ L.

We conclude this section with a description of how representation diagrams behave when we
restrict to the action of a subalgebra. Let L be semisimple of rank n. Let J ⊂ {1, 2, . . . , n},
and consider the (semisimple) subalgebra K generated by {xi, yi, hi}i∈J . Notice that the Dynkin
diagram for K is obtained from the Dynkin diagram for L by removing those nodes corresponding
to the simple roots αi whenever i 6∈ J . Let V := L(λ) be an irreducible representation of L.
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Now let {vt}t∈I be a weight basis for V , and let P be the corresponding representation diagram.
Form another diagram Q by removing from P all edges whose colors are not in the set J . Then
Q is a representation diagram for K corresponding to the induced action of K on V . We say
that the basis {vt}t∈I (and the associated representation diagram P ) respects the restriction to
K if the connected components of Q realize irreducible representations of K. More generally, if
J1 ⊂ J2 ⊂ · · · Jm ⊂ {1, . . . , n} is any sequence of proper subsets, consider the associated “chain”
of subalgebras K1 ⊂ · · · ⊂ Km ⊂ L. Given a representation diagram P for L, form diagrams
Qm, Qm−1, . . . , Q1 by successively removing edges from P (as described above). We say that P (or
any associated weight basis) respects the chain of subalgebras K1 ⊂ · · · ⊂ Km ⊂ L if the connected
components of Qi realize irreducible representations of Ki, where 1 ≤ i ≤ m.

4 Main Examples and Results
In the previous section we described how to associate a representation diagram and a support

to any weight basis. One difficulty in describing the set of supports for a family of representations
is that very few infinite families of representations have been constructed explicitly. We have been
able to construct several small infinite families of irreducible representations, and in the following
examples we consider the supporting diagrams for these constructions. These results give some
preliminary evidence that edge-minimizing supports, modular lattice supports, solitary supports,
and supports with positive, rational edge coefficients are somehow related.
Example 0 Representations of sl(2, C). If we are going to make any sense of our notion of
efficiency, then we should be able to say something about efficient bases for representations of
sl(2, C). It is not hard to see that the only possible support for A1(kω1) is a chain of length k,
and that this support is solitary (using the explicit basis of section 7 of [Hum], for example). In
fact, in any representation diagram for A1(kω1), the product of the coefficients on any edge will be
a positive integer. The following proposition says in effect that the connected components of an
edge-minimizing representation diagram for a representation V of sl(2, C) correspond to irreducible
components in the decomposition of V . (A direct sum of chains is just their disjoint union.)
Proposition 4.1 Let P be a representation diagram for some representation of sl(2, C). Then P

is edge-minimizing if and only if the supporting diagram for P is a direct sum of chains.
Example 1 Gelfand-Zetlin bases. Recalling our discussion of Gelfand-Zetlin bases from the intro-
duction, let us now restrict our attention to the case An = sl(n + 1, C). One can view An−1 inside
An as the subalgebra generated by {xi, yi, hi}n−1

i=1 (that is, the subalgebra whose generators corre-
spond to the n − 1 leftmost nodes of the Dynkin diagram for An). Let λ be a dominant weight,
and use the induced action to regard An(λ) as an An−1-module; each irreducible An−1-module
occurring in the decomposition of An(λ) does so only once. In light of this, the Gelfand-Zetlin
basis for An(λ) is the unique weight basis (up to multiscalar equivalence) which respects the chain
of subalgebras A1 ⊂ · · · ⊂ An−1 ⊂ An. In [GZ] (or [NT]), this basis is indexed by the so-called
“Gelfand patterns,” which are easily converted to semistandard Young tableaux using [Pr4]. If
λ = a1ω1 + a2ω2 + · · · + anωn, then let shape(λ) be the shape with an columns of length n, an−1

columns of length n − 1, etc. It can be seen that the support for this Gelfand-Zetlin basis is the
edge-colored distributive lattice L(shape(λ), n + 1) defined in Section 2. For brevity, we will refer
to this basis as the “GZKN” basis, and we will let LKN

A (shape(λ), n + 1) := L(shape(λ), n + 1). (In
addition, we note that the edge coefficients supplied by [NT] are rational numbers, and the product
of the coefficients on any edge is a positive, rational number.)

Now let A′
n−1 be the subalgebra inside An generated by {xi, yi, hi}n

i=2, so it is the subalgebra
corresponding to the rightmost n−1 nodes of the Dynkin diagram for An. There is a basis for An(λ)
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which respects the chain of subalgebras An ⊃ A′
n−1 ⊃ · · · ⊃ A′

2 ⊃ A′
1, and which can be obtained

as follows. Let V := An(λ). Let Asym
n be the image of An under the automorphism (actually, an

involution) of An induced by the obvious symmetry in the Dynkin diagram for An. So Asym
n is

an isomorphic copy of sl(n + 1, C) in An having generators xsym
i = xn+1−i, ysym

i = yn+1−i, and
hsym

i = hn+1−i, where 1 ≤ i ≤ n. Then by the induced action, the representation V becomes an
irreducible Asym

n -module of highest weight λsym = anωsym
1 + an−1ω

sym
2 + · · · + a1ω

sym
n . Take the

GZKN basis for V (regarded here as an Asym
n -module). Its support is the edge-colored distributive

lattice L(shape(λsym), n+1). (A simple bijection can be used to show that L(shape(λsym), n+1) ∼=
L(shape(λ), n+1)∗ as edge-colored posets.) Finally, to view the support for this basis when we again
regard V as an An-module, simply recolor the edges of L(shape(λsym), n+1) by the rule i 7→ n+1−i,
where 1 ≤ i ≤ n. We call this the “GZDeC” basis for An(λ), and let LDeC

A (shape(λ), n+1) denote the
resulting supporting diagram. (Normally, the lattices LKN

A (shape(λ), n+1) and LDeC
A (shape(λ), n+1)

are distinct, although they coincide when λ is a fundamental weight, for example.) Summarizing,
we have the following theorem:
Theorem (Gelfand-Zetlin) Let λ be a dominant weight for An, and let shape(λ) be the cor-
responding shape. Then the Gelfand-Zetlin bases GZKN and GZDeC for the irreducible repre-
sentation An(λ) are solitary, their supports are the distributive lattices LKN

A (shape(λ), n + 1) and
LDeC

A (shape(λ), n + 1) respectively, and the fixed products of edge coefficients for these solitary sup-
ports are positive, rational numbers.
Example 2 Symplectic and odd orthogonal lattices. (See Section 2 for definitions.) The main
result of [Don1] was:
Theorem With the positive, rational edge coefficients specified in [Don1], the symplectic lattices
LKN

C (k, 2n− k) and LDeC
C (k, 2n− k) are representation diagrams for the kth fundamental represen-

tation of sp(2n, C).
We have also produced positive, rational edge coefficients for LKN

B (k, 2n+1−k) and LDeC
B (k, 2n+

1 − k), and have shown that these lattices are representation diagrams for the kth fundamental
representation of so(2n+1, C). As an immediate consequence we can conclude that the symplectic
lattices LKN

C (k, 2n− k) and LDeC
C (k, 2n− k) and the odd orthogonal lattices LKN

B (k, 2n + 1− k) and
LDeC

B (k, 2n+1− k) are Peck. (In particular, this confirms Reiner and Stanton’s conjecture that the
lattices Andrews(k, 2n−k) = LKN

C (k, 2n−k) defined in [RS] have the strong Sperner property.) The
symplectic lattices have other similarities. They are both distributive sublattices of L(k, 2n − k),
and they have the same rank generating function. However, using posets of join irreducibles (see
[Don2]), one can see that these lattices are isomorphic as posets if and only if k = 1 or k = n.

The following two results are more recent. The proof that these symplectic lattices are solitary
actually gives insight into the distinguishing features of these supports (we say more about this at
the end of this example). In the proof of part A of this theorem, we consider the induced action of
the subalgebra An−1 generated by {xi, yi, hi}n−1

i=1 (that is, the subalgebra inside Cn whose generators
correspond to the n− 1 leftmost nodes of the Dynkin diagram for Cn).
Theorem 4.2
A. Regarded as supporting diagrams for the kth fundamental representation of sp(2n, C), the sym-
plectic lattices LKN

C (k, 2n− k) and LDeC
C (k, 2n− k) are solitary.

B. As supporting diagrams, the symplectic lattices LKN
C (k, 2n − k) and LDeC

C (k, 2n − k) are equally
efficient (that is, they have the same number of edges).

Outline of proof of part A. The proof begins by demonstrating that when edges of color n

are removed from LKN
C (k, 2n− k) (respectively, LDeC

C (k, 2n− k)), the connected components of the
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resulting representation diagram for An−1 correspond to certain LKN
A (µ, n) (respectively, LDeC

A (µ, n)).
In fact, there are exactly k + 1 such components in each case, and each shape µ has at most two
columns.

Let V := Cn(ωk). With a knowledge of the connected components described in the previous
paragraph, one can show that any representation diagram for V with support LKN

C (k, 2n−k) (resp.
LDeC

C (k, 2n− k)) determines a weight basis {v(0)
1 , . . . , v

(0)
j0

, . . . , v
(k)
1 , . . . , v

(k)
jk
} for V such that:

(a) Vi := span{v(i)
1 , . . . , v

(i)
ji
} is stable under the induced action of An−1, and is irreducible as an

An−1-module.

(b) The basis {v(i)
1 , . . . , v

(i)
ji
} for Vi is the GZKN (resp. GZDeC) basis for the An−1-module Vi.

(Let v
(i)
1 be the maximal vector.)

(c) Regarding V as a Cn-module, then v
(i)
1 has weight wt(v(i)

1 ) = ωi + ωn−k+i − ωn, where
0 ≤ i ≤ k.

One can see that the list of weights in (c) has no redundancies, and each of the corresponding
weight spaces is one-dimensional. Putting (b) and (c) together, we see that there is at most one
basis for V (up to multiscalar equivalence) that has LKN

C (k, 2n − k) (resp. LDeC
C (k, 2n − k)) as its

supporting diagram.
Outline of proof of part B. Our first step is to locate a copy of the crystal graph G(Cn, ωk)

associated to the dominant weight ωk for Cn inside each of LKN
C (k, 2n − k) and LDeC

C (k, 2n − k).
That is, we want to view G(Cn, ωk) as an edge-colored subgraph of these lattices. In the KN case,
this is immediate since the labels of [KN] were developed for the purpose of explicitly describing
crystal graphs. Let φ : LKN

C (k, 2n − k) −→ LDeC
C (k, 2n − k) be the bijection (of sets) described

by Sheats ([She], Appendix). The bijection φ has the following property: if an edge s →i t in
LKN

C (k, 2n− k) is contained in the the subgraph of LKN
C (k, 2n− k) corresponding to G(Cn, ωk), then

φ(s) →i φ(t) in LDeC
C (k, 2n− k). So this bijection locates a copy of G(Cn, ωk) inside LDeC

C (k, 2n− k).
In general, the bijection φ is not a poset isomorphism; however, it does give a correspondence

between two large subsets of the edges in these lattices. Moreover, this bijection also suggests how
the remaining edges can be put in a one-one correspondence.

In fact, our experience with these symplectic representation diagrams leads us to speculate that
they are edge-minimizing. We have an argument similar to the proof of part A above that shows
that the odd orthogonal lattices LKN

B (k, 2n+1−k) and LDeC
B (k, 2n+1−k) are solitary as supporting

diagrams for the fundamental representations of so(2n + 1, C). We have found a “crystal graph
preserving” bijection from LKN

B (k, 2n+1−k) to LDeC
B (k, 2n+1−k), and we believe that an argument

similar to the proof of part B above will show that these odd orthogonal lattices are equally efficient.
We should also add that for 1 ≤ k ≤ n, the KN symplectic lattice LKN

C (k, 2n − k) respects the
chain of subalgebras A1 ⊂ · · · ⊂ An−1 ⊂ Cn, where Am is the subalgebra of Cn corresponding to
the m leftmost nodes in the Dynkin diagram for Cn (but this is false for the De Concini symplectic
lattice when n ≥ 3 and k = 2, for example). On the other hand, the De Concini symplectic lattice
LDeC

C (k, 2n − k) respects the chain of subalgebras Cn ⊃ Cn−1 ⊃ · · · ⊃ C2 ⊃ C1, where Cm is the
subalgebra of Cn corresponding to the m rightmost nodes in the Dynkin diagram for Cn, with
C1 = A1 (but this is false for the KN symplectic lattice when n ≥ 3 and k = 2, for example). The
preceding two sentences remain true if we replace the symplectic lattices with their odd orthogonal
counterparts, and replace the symbol “C” with the symbol “B.”
Example 3 Multiplicity free representations. In this example we answer the question: when
does an irreducible representation L(λ) have a unique support? We say that a representation is
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multiplicity free if all its weight spaces have dimension one. For example, minuscule representations
are multiplicity free. For any weight basis {vt} for a multiplicity free representation, the placement
of colored edges between the basis vectors is severely limited by the following fact: if v ∈ V has
weight µ, then Xi.v ∈ Vµ+αi and Yi.v ∈ Vµ−αi . One can use this fact to see that a multiplicity
free representation has a unique supporting diagram (and this support is solitary). For irreducible
representations, the converse is also true:
Theorem 4.3 An irreducible representation L(λ) has unique support if and only if L(λ) is
multiplicity-free.

We have a “uniform construction” of all irreducible multiplicity free representations that goes
as follows. Since all weight spaces have dimension one in any such representation, we can use the
weights themselves as our vertices. Place a directed edge of color i from the weight µ to the weight
ν if µ + αi = ν. The “i-components” of this edge-colored graph are all chains, so by Example 0,
the product of the coefficients on any edge of color i must be a positive integer. (The i-components
are just the connected components that are left over when the edges of colors other than i are
all removed.) We have a procedure that assigns positive, integral coefficients to the edges of this
edge-colored graph, and we can confirm that this choice of edge coefficients indeed produces a
representation diagram. We only use general reasoning at each step of this uniform construction.

For simple Lie algebras, the minuscule representations are An(ωk), Bn(ωn), Cn(ω1), Dn(ω1),
Dn(ωn−1), Dn(ωn), E6(ω1), E6(ω6), and E7(ω7). The other irreducible multiplicity free represen-
tations that we know of are An(kω1), An(kωn), Bn(ω1), C2(ω2), C3(ω3), and G2(ω1).
Proposition 4.4 If L(λ) is one of the multiplicity free representations of the previous paragraph,
then its supporting diagram is a distributive lattice.

See [Pr2] for an explicit description of the posets of join irreducibles of these distributive lattices
for the minuscule cases.
Example 4 Adjoint representations. Let L be simple of rank n. Then the adjoint representation of
L is irreducible, and its highest weight is the highest long root. If more than one root length occurs
in the irreducible root system associated to L (i.e. L ∈ {Bn, Cn, F4, G2}), then the highest short
root is also a dominant weight. We call the associated irreducible representation the short adjoint
representation of L. These representations are “almost” multiplicity free: only the zero weight
space (which corresponds to the Cartan subalgebra H in the case of the adjoint representation) has
multiplicity. Still, there are many possible representation diagrams.

We have explicitly produced n distinguished representation diagrams for the adjoint representa-
tion of L, one for each simple root {αi}n

i=1. For now, let us refer to these as the “efficient adjoint
constructions.” Let m be the number of short simple roots for L. We also have m distinguished
representation diagrams for the short adjoint representation of L, which we will refer to as the
“efficient short adjoint constructions.” The supports for these representation diagrams are pairwise
distinct, and each support is a modular lattice (see Section 2). The edge coefficients are all positive,
rational numbers. If the Dynkin diagram for L does not branch (i.e. L ∈ {An, Bn, Cn, F4, G2}),
then exactly two of these efficient adjoint constructions have distributive lattice support. These
distributive supports “correspond” to the simple roots at each end of the Dynkin diagram for one
of these simple algebras. The adjoint representations of Dn, E6, E7, and E8 cannot be realized on
distributive lattices. We proved the following theorem by proceeding case by case, although there
are uniform aspects to our proof.
Theorem 4.5 Let L be a simple Lie algebra of rank n, with m short simple roots. The supports
for the n efficient adjoint constructions (respectively, the m efficient short adjoint constructions)
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mentioned above are precisely the edge-minimizing supports for the adjoint (resp. short adjoint)
representation. Moreover, these are precisely the modular lattice supports for the adjoint (resp.
short adjoint) representation, and these supports are all solitary.
5 Questions and Remarks

The results of the previous section show that the irreducible representations of sl(n, C), the
fundamental representations of sp(2n, C) and so(2n+1, C), the adjoint representations of the simple
Lie algebras, and many∗ irreducible multiplicity free representations can be realized on modular
lattice supports. Moreover, each of these supports is solitary, and the fixed products of edge
coefficients are positive, rational numbers. (And except for the representations An(λ), in all these
cases we have provided positive, rational edge coefficients.) In certain cases (adjoint representations
of simple Lie algebras, irreducible multiplicity free representations), we know that these supports
are edge-minimizing.

In both the KN and De Concini symplectic cases we have been able to q-ize the edge coefficients
in order to obtain explicit realizations of the “fundamental” representations of the associated quan-
tized enveloping algebra Uq(Cn). (This has already been done for the Gelfand-Zetlin bases for the
irreducible representations of gl(n, C); for example, see [NT].) We expect to be able to q-ize our
other constructions as well.

The examples of Section 4 suggest the following questions about the structure of supporting
diagrams. Is an edge-minimizing support always a modular lattice, and vice-versa? Will edge-
minimizing supports or modular lattice supports always be solitary? (The converse is false if we look
at the “KN” support for C2(3ω1).) If a representation diagram is edge-minimizing, will its connected
components realize irreducible representations? Do edge-minimizing representation diagrams also
minimize the total number of nonzero entries in the matrices {Xi, Yi}n

i=1? (The converse is false for
A2(ω1 +ω2).) Will important bases such as Lusztig’s canonical basis be edge-minimizing? solitary?
have modular lattice support? Will the fixed products of edge coefficients for solitary supports
always be positive, rational numbers? Will there be a corresponding representation diagram with
positive, rational edge coefficients?

In the future we hope to be able to construct the irreducible representation Bn(kω1) on the
distributive lattice LRS

B (kω1, n) := Good(k, 2n) defined by Reiner and Stanton in [RS]. We know
how the edges of this lattice should be colored. We also know that if LRS

B (kω1, n) is a supporting
diagram for Bn(kω1), then it will respect the chain of subalgebras A1 ⊂ · · · ⊂ An−1 ⊂ Bn, where
Am is the subalgebra of Bn corresponding to the m leftmost nodes in the Dynkin diagram for
Bn. Moreover, when all edges with color n are removed from LRS

B (kω1, n), the resulting connected
components can be shown to correspond to certain LKN

A (µ, n). Now, each irreducible An−1-module
appearing in the decomposition of Bn(kω1) (regarded as an An−1-module) does so only once. So
if LRS

B (kω1, n) is a supporting diagram, it is solitary. Presumably the GZKN coefficients can be
attached to the edges of color i when 1 ≤ i < n, so we only need to determine the coefficients on
the edges of color n. We have also found distributive lattices “LDeC

B (kω1, n)” that will hopefully
serve as the De Concini analogs in this case.

We have speculated that the symplectic lattices are edge-minimizing. This is automatically true
when k = 1 since Cn(ω1) is minuscule. Case k = 2 is covered by Theorem 4.5. Will the crystal
graph always appear inside any support for Cn(ωk)? If so, then perhaps we could argue that each
of LKN

C (k, 2n − k) and LDeC
C (k, 2n − k) adds the least number of edges to this subgraph needed to

∗To make this claim for all such irreducible representations, we only need to check that our list in Section 4 of
irreducible multiplicity free representations for the simple Lie algebras is a complete list.
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make it a support for Cn(ωk).
More generally, we could ask: will a supporting diagram always contain the associated crystal

graph as a subgraph? In the case of representations of sl(2, C), the implications of this question
are surprising. An affirmative answer would imply that any connected supporting diagram for
sl(2, C) (including L(k, N−k), L(λ, N), LKN

C (k, 2n−k), LDeC
C (k, 2n−k), etc) has a symmetric chain

decomposition.
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