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Abstract

Results are obtained concerning root systems for asymmetric geometric representations of
Coxeter groups. These representations were independently introduced by Vinberg and Eriksson,
and generalize the standard geometric representation of a Coxeter group in such a way as to
include all Kac–Moody Weyl groups. In particular, a characterization of when a non-trivial
multiple of a root may also be a root is given in the general context. Characterizations of when
the number of such multiples of a root is finite and when the number of positive roots sent to
negative roots by a group element is finite are also given. These characterizations are stated in
terms of combinatorial conditions on a graph closely related to the Coxeter graph for the group.
Other finiteness results for the symmetric case which are connected to the Tits cone and to a
natural partial order on positive roots are extended to this asymmetric setting.
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§1 Introduction. A certain natural symmetric bilinear form is used to define the familiar
geometric representation of a given Coxeter group, often called the “standard” geometric represen-
tation. See [Bour] Ch. 5, [Hum] Ch. 5, or [BB] §4.4. These representations are well understood and
are useful for studying Coxeter groups and their applications in many different contexts. See for
example [Gun] and references therein. Following work of Vinberg and Eriksson, when considering
geometric representations of Coxeter groups in Chapter 4 of the book [BB], Björner and Brenti
initially do not require that the bilinear form be symmetric. The purpose here is to further study
the root systems associated to such representations. Much of what we record here generalizes the
standard theory as presented for example in §5.3, 5.4, 5.6, and 5.13 of [Hum] and extends §4.3 of
[BB]. Since the form is no longer required to be symmetric, all statements here may be applied
to the sets of real roots of Kac–Moody algebras. This yields new proofs of standard Kac–Moody
results (one direction of the first statement in Corollary 3.7, one direction of the second statement
in Corollary 3.10).

These asymmetric geometric realizations of Coxeter groups were introduced by Vinberg in [Vin],
for geometric reasons. A main focus of Vinberg’s study is the behavior of the “fundamental cham-
ber” (a convex polyhedral cone) under the group action. In a different context, Lusztig used such
asymmetric forms when constructing certain irreducible representations of Hecke algebras [Lus].
Eriksson applied asymmetric geometric representations of Coxeter groups in [Erik1] (§4.3, §6.9,
Ch. 8) and [Erik2] (§3, 4) in connection with the combinatorial numbers game of Mozes [Moz].
While the numbers game is of combinatorial interest in its own right, it is also helpful for facilitat-
ing computations with Coxeter groups and their geometric representations (e.g. computing orbits,
solving the word problem, or finding reduced decompositions) and for obtaining combinatorial
models of Coxeter groups. See for example §4.3 of [BB]. The results of this paper are needed for
our further study of the numbers game in [Don]. There we further investigate connections between
moves of the game and reduced decompositions for group elements, characterize “full commutativ-
ity” of group elements in terms of the game, characterize when all positive roots can be obtained

1Email: rob.donnelly@murraystate.edu, Fax: 1-270-809-2314
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from game play, and obtain a new Dynkin diagram classification theorem whose answer consists of
versions of Coxeter graphs for finite Coxeter groups.

The possible asymmetry of the bilinear forms here leads to some curious differences with the
standard case. In Exercise 4.9 of [BB], the authors point out that without symmetry of the bilinear
forms, some important properties of root systems would not be true. However, we will see that
these properties do not fail too badly, at least not all of the time. In particular, we determine
precisely when non-trivial scalar multiples of roots can also be roots (Theorem 3.2), and we relate
the finiteness of this set of root multiples to a combinatorial condition on a graph closely related to
the Coxeter graph for the group (Theorem 3.6). Further, we determine when the number of positive
roots sent to negative roots by a given group element is finite, and we say how this quantity is
related to the length of the given group element (Theorem 3.9). An asymmetric version of Brink
and Howlett’s fundamental result on the finiteness of the set of “dominance-minimal” roots is
obtained in Theorem 3.13. In Theorem 4.5, we show that finiteness of an irreducible Coxeter group
is equivalent to certain conditions on the asymmetric version of the Tits cone.

The original version of this paper was written with only the numbers game motivations above in
mind. Recently, for unrelated reasons Proctor decided to relate the treatment of Weyl groups in
[Kac] and [Kum] to the study of asymmetric geometric representations of Coxeter groups in [BB].
This led to the definition of ‘real Weyl groups’ in [Pro] and his realization that our Theorem 3.2
would play a key role in those notes. Quoting from an earlier draft of [Pro]: “There are many
statements concerning Weyl groups and the ‘real’ roots of Kac–Moody algebras which can at least
be conjectured in the general context of real Weyl groups. If still true, it would seem that each
of these statements should be provable without any reference to Lie brackets or to root spaces, if
one could formulate suitable sufficient conditions for them in terms of real Weyl group concepts.
One example of such a statement is “no ‘non-trivial’ real multiple of a real root is also a root”.
Within the general context, two successive restricting assumptions (which are both automatically
satisfied by Weyl groups) guarantee [via our Theorem 3.2] that this example statement holds true
in a context which is still much more general than that of Weyl groups or of Section 4.4 of [BB].”

At the end of Section 2 we observe that any Kac–Moody Weyl group arises as one of our rep-
resenting groups σ(W ) ⊂ GL(V ). Hence all of our results pertain to the special case consisting of
arbitrary Kac–Moody Weyl groups. Our complete characterizations of the “no non-trivial multiple
of a (real) root is also a root” (Corollary 3.7) and the “set of positive (real) roots sent to negative is
finite” (Corollary 3.10) properties are given proofs which are naturally set in a general environment
which encompasses both the standard geometric representations of Coxeter groups and Kac–Moody
Weyl groups. Only combinatorial positivity arguments are used in these proofs; no references to
Lie brackets or root spaces are needed.

§2 Definitions and preliminaries. In this section we present the main objects of interest
for this paper. The crucial information identifying an asymmetric geometric representation of a
Coxeter group is a certain real matrix analog of a generalized Cartan matrix. We take this matrix
as our starting point. Fix a positive integer n and a totally ordered set In with n elements (usually
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In := {1 < . . . < n}). An E-generalized Cartan matrix (E-GCM)2 is an n×n matrix A = (aij)i,j∈In
with real entries satisfying the requirements that each main diagonal matrix entry is 2, that all
other matrix entries are nonpositive, that if aij is nonzero then aji is also nonzero, and that for
i 6= j either aijaji ≥ 4 or aijaji = 4 cos2(π/kij) for some integer kij ≥ 2. The peculiar quantities
4 cos2(π/k) appear in the developments of [Bour], [Hum] as the products of transpose entries of
a symmetric matrix for the defining bilinear form of the standard geometric representation of a
Coxeter group. To an n×n E-generalized Cartan matrix A = (aij)i,j∈In we associate a finite graph
Γ as follows: The nodes (γi)i∈In of Γ are indexed by the set In, and an edge is placed between
nodes γi and γj if and only if i 6= j and the matrix entries aij and aji are nonzero. We display this

edge as r
γi

r
γj

- �
p q , where p = −aij and q = −aji. We call the pair (Γ, A) an E-GCM

graph. See Figure 3.1 for a six-node example.

Define the associated Coxeter group W (Γ, A) to be the Coxeter group with identity ε, generators
{si}i∈In , and defining relations s2

i = ε for i ∈ In and (sisj)mij = ε for all i 6= j, where the mij are
determined by:

mij =

{
kij if aijaji = 4 cos2(π/kij) for some integer kij ≥ 2
∞ if aijaji ≥ 4

(Conventionally, mij = ∞ means there is no relation between generators si and sj .) When A is a
generalized Cartan matrix or GCM (i.e. an E-GCM with integer entries), then W (Γ, A) is a Weyl
group. In this case, mij is finite only for the pairs {−aij ,−aji} = {0, 0}, {1, 1}, {1, 2}, {1, 3}; the
corresponding values of such mij are 2, 3, 4, 6. One can think of the E-GCM graph as a refinement
of the information from the Coxeter graph for the associated Coxeter group. Observe that any
Coxeter group on a finite set of generators is isomorphic to W (Γ, A) for some E-GCM graph (Γ, A).
We let ` denote the length function for W = W (Γ, A). An expression si1si2 · · ·sip for an element
of W is reduced if `(si1si2 · · ·sip) = p. For J ⊆ In, let WJ be the subgroup generated by {si}i∈J , a
parabolic subgroup, and W J := {w ∈ W | `(wsj) > `(w) for all j ∈ J} is the set of minimal coset
representatives. If J = {i, j}, then WJ is a dihedral group of order 2mij .

From here on, fix an arbitrary E-GCM graph (Γ, A) with index set In and associated Coxeter
group W = W (Γ, A). We now define the representations of W which are of interest to us here,
cf. §4.2 of [BB]. To fix notation that will help set up some subsequent arguments, we present
some of the details here. Let V be a real n-dimensional vector space freely generated by (αi)i∈In .
(Elements of this ordered basis are simple roots.) Equip V with a possibly asymmetric bilinear
form B : V × V → R defined on the basis (αi)i∈In by B(αi, αj) := 1

2aij . For each i ∈ In define an
operator Si : V → V by the rule Si(v) := v− 2B(αi, v)αi for each v ∈ V . One can check that S2

i is
the identity transformation, so Si ∈ GL(V ). Fix i 6= j and set Vi,j := spanR{αi, αj}. Observe that
Sk(Vi,j) ⊆ Vi,j for k = i, j. Let B be the ordered basis (αi, αj) for Vi,j , and for any linear mapping

2Motivation for terminology: E-GCM’s with integer entries are generalizations of ‘generalized’ Cartan matrices
(GCM’s), which are the starting point for the study of Kac-Moody algebras. Here we use the modifier “E” because
of the relationship between these matrices and the combinatorics of Eriksson’s E-games [Erik1], [Erik2].
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T : Vi,j → Vi,j let [T ]B be the matrix for T relative to B. Then

[Si|Vi,j ]B =

(
−1 −aij
0 1

)
, [Sj |Vi,j ]B =

(
1 0
−aji −1

)
, [SiSj |Vi,j ]B =

(
aijaji − 1 aij

−aji −1

)
Analysis of the eigenvalues for Xi,j := [SiSj |Vi,j ]B as in the proofs of Proposition 3.13 of [Kac] and
Proposition 1.3.21 of [Kum] shows that Xi,j has infinite order when aijaji ≥ 4, and hence SiSj has
infinite order as an element of GL(V ). When 0 < aijaji < 4, write aijaji = 4 cos2 θ for θ := π/mij .
In this case check that Xi,j has two distinct complex eigenvalues (e2iθ and e−2iθ). It follows that

Xi,j has finite order mij . When aijaji = 0, then Xi,j =

(
−1 0
0 −1

)
, which clearly has order

mij = 2. Now assume 0 ≤ aijaji < 4, and set V ′i,j := {v ∈ V |B(αi, v) = 0 = B(αj , v)}. One can
easily check that Vi,j ∩V ′i,j = {0}. The facts that dimVi,j = 2, dimV ′i,j ≥ n−2, and Vi,j ∩V ′i,j = {0}
together imply that dimV ′i,j = n− 2 and V = Vi,j ⊕ V ′i,j . Since SiSj acts as the identity on V ′i,j , it
follows that SiSj has order mij as an element of GL(V ).

Then there is a unique homomorphism σA : W → GL(V ) for which σA(si) = Si. With the
dependence on A understood, we set σ := σA. We now have W acting on V , and for all w ∈W and
v ∈ V we write w.v for σ(w)(v). We call σ a geometric representation of W . If A is symmetric such
that aklalk ≥ 4 ⇒ akl = alk = −2 for all k 6= l, then σ is the standard geometric representation.
The root system for σ is Φ := ΦA := {w.αi}i∈In,w∈W . For each w ∈ W , σ(w) permutes Φ, so σ

induces an action of W on Φ. Evidently, Φ = −Φ. Elements of Φ are roots and are necessarily
nonzero. If α =

∑
ciαi is a root with all ci nonnegative (respectively nonpositive), then say α is a

positive (resp. negative) root. Let Φ+ and Φ− denote the collections of positive and negative roots
respectively. Clearly Φ+ ∩Φ− = ∅. The next statement is Proposition 4.2.5 of [BB] and appears in
a somewhat different form as Corollary 4.3 in [Erik1].

Proposition 2.1 Let w ∈W and i ∈ In. If `(wsi) > `(w), then w.αi ∈ Φ+. If `(wsi) < `(w), then

w.αi ∈ Φ−.

This result analogizes Theorem 5.4 of [Hum], which handles the standard case. As with Corollary
5.4 of [Hum], it is a consequence of Proposition 2.1 that the representation σ is faithful. (See [BB]
Theorem 4.2.7.) It also follows that Φ = Φ+ ∪ Φ−. This is Equation 4.24 of [BB], which actually
could have been derived at the end of Section 4.2 of that text.

Kac–Moody Weyl groups are subsumed into this paper as follows: Let A be a generalized Cartan
matrix. We identify our simple roots {α1, . . . , αn} with the simple roots in h∗R of [Kac], which is
the dual of a real vector space hR of dimension n + l, where l = nullity(A). The simple “coroots”
of [Kac] are a linearly independent set {α∨1 , . . . , α∨n} ⊂ hR for which αj(α∨i ) = aij . Now for
1 ≤ i ≤ n, a mapping Ri : h∗R → h∗R is defined in [Kac] by Ri(v) = v − v(α∨i )αi. The associated
Kac–Moody Weyl group is the subgroup of GL(h∗R) generated by {Ri}ni=1. If we identify our V
with spanR{α1, . . . , αn} ⊆ h∗R and restrict each Ri to V , then the homomorphism W → GL(V )
determined by si 7→ Ri|V is the representation σ. The real roots of Kac–Moody theory are the
roots Φ ⊂ V obtained here from this geometric representation of W .

§3 Root system results. Asymmetry of the bilinear form leads to crucial differences with the
symmetric case. Most notably, σ(W ) preserves the form B if and only if A is symmetric. From
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this fact for symmetric A it readily follows that if Kαx ∈ Φ for some x ∈ In and real number K,
then K = ±1. (See equation 4.27 of [BB].) However, when A is asymmetric sometimes Kαx is a
root for K 6= ±1, as can be seen in Exercise 4.9 of [BB] and Example 3.12 below.3 To understand
how such a W -action can generate scalar multiples of roots in Φ, we first analyze how si and sj

act in tandem on Vi,j . Our next result strengthens Lemma 4.2.4 of [BB] and provides a different
proof. It also answers Exercise 4.6 of [BB].

Lemma 3.1 Fix i 6= j in In, and let k be a positive integer. If mij =∞, then (sisj)k.αi = aαi+bαj
and sj(sisj)k.αi = cαi + dαj for positive coefficients a, b, c, and d. Now suppose mij < ∞. If

2k < mij , then (sisj)k.αi = aαi + bαj with a ≥ 0 and b > 0. In this case, a = 0 if and only if mij is

odd and k = (mij − 1)/2, and consequently (sisj)k.αi = −aji

2 cos(π/mij)αj . Similarly, if 2k < mij − 1,

then sj(sisj)k.αi = cαi + dαj with c > 0 and d ≥ 0. In this case, d = 0 if and only if mij is even

and k = (mij − 2)/2, and consequently sj(sisj)k.αi = αi.

Proof. Let B and Xi,j be as above, and set Xi := [Si|Vi,j ]B and Xj := [Sj |Vi,j ]B. To understand
(sisj)k.αi and sj(sisj)k.αi we compute Xk

i,j and XjX
k
i,j . Set p := −aij and q := −aji.

For mij = ∞, first take pq = 4. We can write Xi,j = PY P−1 for nonsingular P and upper
triangular Y as follows:

Xi,j =
1
p

(
p p

2 1

)(
1 1
0 1

)(
−1 p

2 −p

)
.

Then for any positive integer k we obtain Xk
i,j =

(
2k + 1 −kp
kq −2k + 1

)
. It follows that (sisj)k.αi =

(2k+ 1)αi + kqαj , with both coefficients of the linear combination positive. From the first column
of the matrix XjX

k
i,j we see that sj(sisj)k.αi = (2k + 1)αi + (k + 1)qαj , with both coefficients

of the linear combination positive. Next take pq > 4. In this case we get distinct eigenvalues
λ = 1

2(pq − 2 +
√
pq(pq − 4)) > 1 and µ = 1

2(pq − 2 −
√
pq(pq − 4)) < 1 for Xi,j (here we have

λµ = 1). Similar to the above, we may write Xi,j = PDP−1 for the diagonal matrix D =

(
λ 0
0 µ

)
and a nonsingular matrix P , from which we obtain

Xk
i,j =

1
p(λ− µ)

(
p p

µ′ λ′

)(
λk 0
0 µk

)(
λ′ −p
−µ′ p

)
,

for any positive integer k, where λ′ := λ+ 1 and µ′ := µ+ 1. This (eventually) simplifies to

Xk
i,j =

1
λ− µ

(
λ′λk − µ′µk −p(λk − µk)
q(λk − µk) λ′µk − µ′λk

)
.

From this we also get

XjX
k
i,j =

1
λ− µ

(
λ′λk − µ′µk −p(λk − µk)

q(λk+1 − µk+1) µ′µk − λ′λk

)
.

3In Proposition 6.9 of [Erik1] and in [Erik2] just prior to Proposition 4.4, it is asserted that sx(Φ+ \ {αx}) =
Φ+ \ {αx} for all x ∈ In. However, this will not be the case if Kαx is a root for some K 6= ±1. Only Theorem 6.9 of
[Erik1] and Proposition 4.4 of [Erik2] are affected by this misstatement. (See Lemma 3.8 below.)
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The factor 1
λ−µ is positive, and for both matrices Xk

i,j and XjX
k
i,j , the first column entries are

positive. So, (sisj)k.αi = aαi + bαj with both a and b positive, and sj(sisj)k.αi = cαi + dαj with
c and d both positive.

For the mij < ∞ case, set θ := π/mij . Note that the hypotheses of the lemma require that
mij > 2, so in particular p and q are nonzero. Check that Xi,j can be written as Xi,j = PDP−1

for a nonsingular matrix P and diagonal matrix D in the following way:

1
q(e2iθ − e−2iθ)

(
e2iθ + 1 e−2iθ + 1

q q

)(
e2iθ 0
0 e−2iθ

)(
q −e−2iθ − 1
−q e2iθ + 1

)
.

Then for any positive integer k we have

Xk
i,j = PDkP−1 =

1
sin(2θ)

(
sin(2(k + 1)θ) + sin(2kθ) −p sin(2kθ)

q sin(2kθ) − sin(2kθ)− sin(2(k − 1)θ)

)

and

XjX
k
i,j =

1
sin(2θ)

(
sin(2(k + 1)θ) + sin(2kθ) −p sin(2kθ)

q sin(2(k + 1)θ) (1− pq) sin(2kθ) + sin(2(k − 1)θ)

)

Use the first column of Xk
i,j and XjX

k
i,j to see that (sisj)k.αi = 1

sin(2θ) [sin(2(k+1)θ)+sin(2kθ)]αi+
q

sin(2θ) sin(2kθ)αj and that sj(sisj)k.αi = 1
sin(2θ) [sin(2(k+1)θ)+sin(2kθ)]αi+ q

sin(2θ) sin(2(k+1)θ)αj .
As long as 2(k+ 1) < mij , then all the coefficients of these linear combinations will be positive. So
now suppose 2(k+1) ≥ mij . First we consider (sisj)k = aαi+bαj for some positive k with 2k < mij .
There are two possibilities now: 2(k + 1) = mij or 2(k + 1) = mij + 1. In the former case both a

and b are positive. In the latter case we have mij odd, a = 1
sin(2θ) [sin(2(k+1)θ)+sin(2kθ)] = 0, and

b = q sin θ
sin(2θ) = q

2 cos θ . Second we consider sj(sisj)k = cαi+dαj for some positive k with 2k < mij−1.
Now the fact that 2(k+ 1) ≥ mij implies we have 2(k+ 1) = mij . In particular, mij is even. With
k = (mij − 2)/2 now, one can check that d = 0 and c = 1.

Distinct nodes γi and γj in (Γ, A) are odd-neighborly if mij is odd. If in addition we have
aij 6= aji, then the adjacent nodes γi and γj form an odd asymmetry. For odd mij , let vji be
the element (sisj)(mij−1)/2 of W , and set Kji := −aji

2 cos(π/mij) =
√

aji

aij
. In view of Lemma 3.1,

vji.αi = Kjiαj . Observe that KijKji = 1 and that vij = v−1
ji . We have `(vji) = mij − 1. Say a

sequence P := [γi0 , γi1 , . . . , γip ] of nodes from Γ is a path of odd neighbors, or ON-path, if consecutive
nodes of P are odd neighbors. The ON-path P has length p, and we allow ON-paths to have length
zero. We say γi0 and γip are the start and end nodes of the ON-path, respectively. Let wP ∈W be
the Coxeter group element vipip−1 · · · vi2i1vi1i0 , and let ΠP := Kipip−1 · · ·Ki2i1Ki1i0 , where wP = ε

with ΠP = 1 when P has length zero. Then wP .αi0 = ΠPαip . If ON-path Q = [γj0 , γj1 , . . . , γjq ]
has the same start node as the end node of P, then their concatenation P\Q is the ON-path
[γi0 , γj1 , . . . , γip = γj0 , . . . , γjq ]. Note that wP\Q = wQwP .

Distinct nodes γi and γj in (Γ, A) are even-related if mij is even. For even mij , let vji be the
element sj(sisj)(mij−2)/2 of W . Then vji.αi = αi (for mij ≥ 4 this is justified by Lemma 3.1),
and vij = v−1

ji . We have `(vji) = mij − 1. Say a sequence S := [(γi0 , γi1), (γi0 , γi2), . . . , (γi0 , γip)]
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is a sequence of even-related nodes, or ER-sequence, rooted at γi0 if for each pair (γi0 , γik) of the
sequence (1 ≤ k ≤ p) the nodes γi0 and γik are even-related. Say S has length p. We allow S
to be the empty sequence, in which case it has length zero. Let wS ∈ W be the Coxeter group
element vipi0 · · · vi2i0vi1i0 , with wS = ε when S has length zero. Then wS .αi0 = αi0 . If ER-sequence
T = [(γi0 , γj1), . . . , (γi0 , γjq)] is also rooted at γi0 , then the concatenation S]T is the ER-sequence
[(γi0 , γi1), . . . , (γi0 , γip), (γi0 , γj1), . . . , (γi0 , γjq)] rooted at γi0 . Note that wS]T = wT wS .

Theorem 3.2 Let w ∈W with w 6= ε, and let i ∈ In. (1) Then w.αi = Kαx for some x ∈ In and

some K > 0 if and only if there is an ON-path P = [γi0=i, γi1 , . . . , γip−1 , γip=x] and ER-sequences

Sk rooted at γik (0 ≤ k ≤ p) such that w = wSp
vip,ip−1wSp−1

vip−1,ip−2 · · · vi2,i1wS1vi1,i0wS0 . In

this case, w.αi = wP .αi = ΠPαx. (2) Similarly w.αi = Kαx for some x ∈ In and some K < 0
if and only if there is an ON-path P = [γi0=i, γi1 , . . . , γip−1 , γip=x] and ER-sequences Sk rooted

at γik (0 ≤ k ≤ p) such that w = wSp
vip,ip−1wSp−1

vip−1,ip−2 · · · vi2,i1wS1vi1,i0wS0si. In this case,

w.αi = (wPsi).αi = −ΠPαx.

Proof. Note that (2) follows from (1). For (1), the “if” direction is handled by the two definitions
paragraphs preceding the theorem statement. For the “only if” direction, we induct on `(w). If
`(w) = 1, then it is clear that w = sj for some j 6= i in In and with mij = 2. So, vji = sj . Taking
S0 = [(γi, γj)], P = [γi], and S1 the empty sequence, then w has the desired form. Now suppose
`(w) > 1. Take any j ∈ In for which `(wsj) = `(w) − 1. Since `(wsi) > `(w), then i 6= j. Let
J := {i, j}, and let vJ be the unique element in W J and vJ the unique element in WJ for which
w = vJvJ . Then `(w) = `(vJ) + `(vJ ) by Proposition 2.4.4 of [BB]. Write vJ .αi = aαi + bαj .
Since `(wsi) > `(w), then `(vJ si) > `(vJ ), and hence vJ .αi ∈ Φ+ (Proposition 2.1). So a ≥ 0 and
b ≥ 0. Suppose a > 0 and b > 0. Now vJ ∈ W J implies that `(vJsi) > `(vJ) and `(vJsj) > `(vJ),
and hence vJ .αi ∈ Φ+ and vJ .αj ∈ Φ+ (Proposition 2.1). Write vJ .αi =

∑
y∈In cyαy (cy ≥ 0) and

vJ .αj =
∑

y∈In dyαy (dy ≥ 0). Then Kαx = w.αi = vJ .(aαi + bαj) =
∑

y∈In(acy + bdy)αy implies
that for all y 6= x, acy + bdy = 0 and hence cy = dy = 0. Then vJ .αi and vJ .αj are both multiples
of αx. But then (vJ)−1.αx is a scalar multiple of αi and of αj , which is absurd. So we must have
a = 0 or b = 0. Then by Lemma 3.1, it follows that mij is finite and vJ = vji.

If mij is even, then vji.αi = αi. So vJ .αi = Kαx. If vJ = ε, then take S0 = [(γi, γj)],
P = [γi], and S1 the empty sequence to see that w = vji has the desired form. Otherwise,
since `(vJ) < `(w) we may apply the induction hypothesis to vJ to see that there is an ON-
path P = [γi0=i, γi1 , . . . , γip−1 , γip=x] and ER-sequences Sk rooted at γik (0 ≤ k ≤ p) such that
vJ = wSp

vip,ip−1wSp−1
vip−1,ip−2 · · · vi2,i1wS1vi1,i0wS0 . Let S ′0 := [(γi=i0 , γj)]]S0. Then we get w =

wSp
vip,ip−1wSp−1

vip−1,ip−2 · · · vi2,i1wS1vi1,i0wS′0 , which has the desired form. On the other hand, if

mij is odd, then vji.αi = Kjiαj . So vJ .αj = K
Kji

αx. If vJ = ε, then take P := [γi, γj ] with
S0 and S1 empty ER-sequences to see that w = vji has the desired form. Otherwise apply the
induction hypothesis to vJ to see that there is an ON-path P = [γi1=j , γi2 , . . . , γip−1 , γip=x] and
ER-sequences Sk rooted at γik (1 ≤ k ≤ p) such that vJ = wSp

vip,ip−1wSp−1
vip−1,ip−2 · · · vi2,i1wS1 .

Take i0 = i, P ′ = [γi, γj ]\P (an ON-path), and S0 an empty ER-sequence. Then we get w =
wSp

vip,ip−1wSp−1
vip−1,ip−2 · · · vi2,i1wS1vi1,i0wS0 as desired. Whether mij is even or odd, we now see

that w.αi = wP .αi = ΠPαx.
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Figure 3.1: A unital ON-cyclic E-GCM graph for Example 3.12.
The notation gm (resp. g∞ ) on an edge r r- �

p q indicates that pq = 4 cos2(π/m) (resp. pq ≥ 4).
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The induction argument of the preceding proof can be viewed as a constructive method for
obtaining the expression of the theorem statement for the Coxeter group element w. A further
consequence of the proof is the following result about the length of w. It says, in effect, that if we
write w as a product of vji’s as prescribed in the theorem statement and then in turn write each
such vji as a shortest product of generators, the resulting expression for w is reduced.

Corollary 3.3 Suppose w ∈ W , i, x ∈ In, and w.αi = Kαx for some K > 0. Suppose w =
wSp

vip,ip−1wSp−1
vip−1,ip−2 · · · vi2,i1wS1vi1,i0wS0 for an ON-path P = [γi0=i, γi1 , . . . , γip−1 , γip=x] and

ER-sequences Sk rooted at γik (0 ≤ k ≤ p) obtained by the method of the preceding proof. For

all j, l ∈ In, let c(j, l) count the total number of occurrences of (γj , γl) as consecutive nodes (in

this order) in the ON-path P or as a pair in the ER-sequences Sk (0 ≤ k ≤ p). Then `(w) =∑
j,l∈In c(j, l)(mjl − 1).

For any α ∈ Φ, set S(α) := SA(α) := {Kα}K∈R ∩ Φ+. Our analysis of the sets S(α) requires
some additional notation. For ON-paths P and Q, write P ∼ Q and say P and Q are Π-equivalent
if these ON-paths have the same start and end nodes and ΠP = ΠQ . This is an equivalence relation
on the set of all ON-paths. An ON-path P is simple if it has no repeated nodes with the possible
exception that the start and end nodes may coincide. Two ON-paths P and Q are scalar-distinct
if ΠP 6= ΠQ . An ON-path P = [γi0 , . . . , γip ] is an ON-cycle if γip = γi0 . It is unital if ΠP = 1,
i.e. ai0,i1ai1,i2 · · ·aip−1,i0 = ai0,ip−1 · · ·ai2,i1 · · ·ai1,i0 . We say (Γ, A) is unital ON-cyclic if and only if
ΠC = 1 for all ON-cycles C. See Figure 3.1. From the definitions it follows that (Γ, A) is unital
ON-cyclic if it has no odd asymmetries. So if A is a GCM, then (Γ, A) is unital ON-cyclic. If A is
a symmetrizable E-GCM, then by applying Exercise 2.1 of [Kac] or Exercise 1.5.E.1 of [Kum] to
the environment of E-GCM’s, one sees that (Γ, A) is unital ON-cyclic. However, a unital ON-cyclic
E-GCM graph need not have a symmetrizable matrix A, as Example 3.12 shows. To check if an
E-GCM graph is unital ON-cyclic, it is enough to check that each simple ON-cycle is unital. An
E-GCM graph is ON-connected if any two nodes can be joined by an ON-path. An ON-connected
component of (Γ, A) is an E-GCM subgraph (Γ′, A′) whose nodes form a maximal collection of
nodes in (Γ, A) which can be pairwise joined by ON-paths.

Lemma 3.4 Let α and β be roots in Φ. Suppose an element of S(α) is in the same orbit as an

element of S(β) under the action of W on Φ. Then there is a one-to-one correspondence between
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the sets S(α) and S(β). If γi and γj are nodes in the same ON-connected component of (Γ, A),
then there is a one-to-one correspondence between the sets S(αi) and S(αj).

Proof. Since S(α) = S(Kα) for all Kα ∈ S(α), it suffices to assume that α and β are in the same
W -orbit, i.e. β = w.α for some w ∈ W . It is easy to see that the mapping S(α)→ S(β) given by
σ(w)|S(α) gives the desired one-to-one correspondence. If γi and γj are in the same ON-connected
component, then by Theorem 3.2, some positive scalar multiple of αj is in the W -orbit of αi. Thus
there is a a one-to-one correspondence between the sets S(αi) and S(αj).

The proof of the following lemma is a routine verification, so it is omitted.

Lemma 3.5 Suppose (Γ, A) is unital ON-cyclic. Then for any ON-path P there is a simple

ON-path which is Π-equivalent to P.

Although Theorem 3.6 and Corollary 3.7 ask readers to look at a subgraph (Γ′, A′) of (Γ, A), the
conclusions pertain to the action of W = W (Γ, A) on Φ.

Theorem 3.6 Choose any ON-connected component (Γ′, A′) of (Γ, A), and let J := {x ∈ In}γx∈Γ′ .

Then the following are equivalent:

(1) (Γ′, A′) is unital ON-cyclic.

(2) |S(w.αx)| <∞ for some x ∈ J and w ∈W .

(3) |S(w.αx)| <∞ for all x ∈ J and w ∈W .

In these cases for all x, y ∈ J and w ∈W , |S(αx)| = |S(w.αy)|. This common quantity is equal to

the largest number of pairwise scalar-distinct simple ON-paths in (Γ, A) with end node γx.

Proof. We show (2) ⇒ (1) ⇒ (3), the implication (3) ⇒ (2) being obvious. For (1) ⇒ (3), let
x ∈ J . Observe that if Kαx ∈ Φ+, then by Theorem 3.2 we must have K = ΠP for some ON-path
P with end node γx. Therefore P is in (Γ′, A′). By Lemma 3.5, we may take a simple ON-path Q
Π-equivalent to P (all ON-paths Π-equivalent to P must be in (Γ′, A′)), so that K = ΠQ . Since
there can be at most a finite number of simple ON-paths, then there can be at most finitely many
positive roots that are scalar multiples of a given αx. That |S(w.αx)| = |S(αx)| for all w ∈ W
follows from Lemma 3.4. For (2) ⇒ (1), we show the contrapositive. Let C = [γx, . . . , γx] be a
non-unital ON-cycle with start/end node γx for an x ∈ J . So necessarily C has nonzero length.
Note that wC .αx = ΠCαx. Next, for y ∈ J (and possibly y = x) take any ON-path P with start
node γx and end node γy. Since wP .αx = ΠPαy, it follows that wPw

k
C .αx = ΠPΠk

Cαy for any integer
k. In particular, for all y ∈ J , we have |S(αy)| = ∞. So by Lemma 3.4 |S(w.αy)| = ∞ for all
y ∈ J , w ∈W . The next-to-last claim of the theorem statement follows from Lemma 3.4. The final
claim follows from our proof above of the (1) ⇒ (3) part of the theorem statement.

From Theorem 3.2 it follows that if (Γ, A) has an odd asymmetry, then there exists a root which

is a non-trivial multiple of a simple root. The following corollary of Theorem 3.6 contains a more
general statement that includes the converse. When A is an integer matrix, odd neighbors γi and
γj must have {−aij ,−aji} = {1, 1}. These are not asymmetric. Therefore the matrices A defining
Weyl groups have no odd asymmetries. In this integer matrix setting, Kac ([Kac] Proposition 5.1.b)
and Kumar ([Kum] Corollary 1.3.6.a) show that for a “real” root α and real number K, Kα is
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also a root if and only if K = ±1. Their proofs use Lie brackets and root space reasoning. But
alternatively, this result is also a very special case of the following:

Corollary 3.7 We have |S(α)| = 1 for all α ∈ Φ if and only if (Γ, A) has no odd asymmetries.

More generally, choose any ON-connected component (Γ′, A′) of (Γ, A), and let J := {x ∈ In}γx∈Γ′ .

Then |S(w.αx)| = 1 for some x ∈ J and w ∈ W if and only if |S(w.αx)| = 1 for all x ∈ J and

w ∈W if and only if (Γ′, A′) has no odd asymmetries.

Proof. Follows from Theorems 3.2 and 3.6.

Analogizing [BB] and [HRT], for any w ∈ W set N(w) := NA(w) := {α ∈ Φ+ |w.α ∈ Φ−}. (For
the matrices A considered in [Kum] Ch. 1, this set is notated Φw−1 .)

Lemma 3.8 For any i ∈ In, si(Φ+ \S(αi)) = Φ+ \S(αi). Now let w ∈ W . If w.αi ∈ Φ+, then

N(wsi) = si(N(w)) ∪q S(αi), a disjoint union. If w.αi ∈ Φ−, then N(wsi) = si(N(w) \S(αi)).

Proof. Using Proposition 2.1, the proof of Proposition 5.6.(a) from [Hum] is easily adjusted to
prove the first claim. Proofs for the remaining claims involve routine set inclusion arguments.

When (Γ, A) is ON-connected and unital ON-cyclic, set fΓ,A := |S(αx)| for any given x ∈ In. At
this point, Proposition 2.1, Theorem 3.2, Lemma 3.8, and Theorem 3.6 allow us to modify the proof
of Proposition 5.6 of [Hum] to obtain the result that for all w ∈ W , |N(w)| = fΓ,A `(w). Theorem
3.9 below generalizes this statement for arbitrary E-GCM graphs. For J ⊆ In, let C(J) denote the
set of all ON-connected components of (Γ, A) containing some node from the set {γx}x∈J .

Theorem 3.9 Let w ∈ W with p = `(w) > 0. (1) Then N(w) is finite if and only if w has a

reduced expression si1 · · ·sip for which S(αiq) is finite for all 1 ≤ q ≤ p if and only if every reduced

expression si1 · · ·sip for w has S(αiq) finite for all 1 ≤ q ≤ p. (2) Now suppose w = si1 · · ·sip and

N(w) is finite. Let J := {i1, . . . , ip}. In view of (1), let f1 be the min and f2 the max of all integers

in the set {fΓ′,A′ | (Γ′, A′) ∈ C(J)}. Then f1 `(w) ≤ |N(w)| ≤ f2 `(w).

Proof. (1) follows from Lemma 3.8. For (2), induct on `(w). Take w′ := si1 · · · sip−1 with
w = w′sip . Now γip is in an ON-connected component (Γ′, A′) of (Γ, A). Then by Lemma 3.8,
|N(w)| = |N(w′)|+ fΓ′,A′ . Since f1 `(w′) ≤ |N(w′)| ≤ f2 `(w′), the result follows.

Apply Theorems 3.6 and 3.9 to get:

Corollary 3.10 We have N(w) finite for all w ∈ W if and only if (Γ, A) is unital ON-cyclic.

Moreover |N(w)| = `(w) for all w ∈W if and only if (Γ, A) has no odd asymmetries.

When W is infinite, the length function must take arbitrarily large values. Then by Theorem
3.9, Φ is infinite as well. If W is finite, then Φ is finite as well, so |S(αx)| < ∞ for all x ∈ In. In
this case let w0 be the longest element of W (cf. Exercise 5.6.2 of [Hum]). It is easily seen that if
w0 = si1 · · · sil is reduced, then {i1, . . . , il} = In.

Corollary 3.11 Suppose W is finite. Let Φstd denote the root system for the standard geometric

representation. Then f1|Φ+
std| ≤ |Φ

+| ≤ f2|Φ+
std|, where f1 is the min and f2 is the max of all

integers in the set {fΓ′,A′ | (Γ′, A′) ∈ C(In)}.
Proof. Apply Proposition 2.1 to see that N(w0) = Φ+. By Theorem 3.9, f1`(w0) ≤ |Φ+| ≤

f2`(w0). To see that `(w0) = |Φ+
std|, apply the previous reasoning in the standard case.
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Example 3.12 In Figure 3.1 is depicted a connected, unital ON-cyclic E-GCM graph (Γ, A) with
three ON-connected components: (Γ1, A1) is the E-GCM subgraph with nodes γ1 and γ2; (Γ2, A2)
has nodes γ4, γ5, and γ6; and (Γ3, A3) has only the node γ3. The matrix A is not symmetrizable
by Exercise 2.1 of [Kac] or Exercise 1.5.E.1 of [Kum]. Pertaining to the pair (γ4, γ6), we have
4 cos2(π/5) = 3+

√
5

2 and 2 cos(π/5) = 1+
√

5
2 . Since a46 = −1+

√
5

4 and a64 = −(1 +
√

5), then
K46 = −a46

2 cos(π/5) = 1
2 and K64 = −a64

2 cos(π/5) = 2. For all other odd neighbors (γi, γj) in this graph,
mij = 3, so Kij = −aij and Kji = −aji. By the last statement of Theorem 3.6, fΓ1,A1 = 2 and
fΓ2,A2 = 3. For example, S(α2) = {α2,

1
5α2} = N(s2) and S(α5) = {α5,

1
7α5,

2
7α5} = N(s5). By

Theorem 3.9, we can see that fΓ1,A1`(s5s2) = 4 ≤ |N(s5s2)| ≤ 6 = fΓ2,A2`(s5s2). More precisely,
by Lemma 3.8 we get N(s5s2) = s2(N(s5)) ∪q S(α2), whence |N(s5s2)| = 5.

We now apply Theorem 3.2 to extend a finiteness result of Brink and Howlett concerning a natural
partial order on positive roots, cf. Theorem 2.8 of [BH]. From here on, Φstd denotes the root system
for the standard geometric representation, and {αstd

i }i∈In are its simple roots. Following [BH] and
§4.7 of [BB], for roots α, β ∈ Φ+

std, we say α dominates β and write α dom β if for all w ∈ W we
have w.β ∈ Φ−std whenever w.α ∈ Φ−std. It is known that the relation “dom” on Φ+

std is a partial
order on Φ+

std ([BH], §4.7 of [BB]). Roots in Φ+
std that are minimal with respect to this partial order

are dominance-minimal. Observe that simple roots in Φ+
std are dominance-minimal. The fact, due

to Brink and Howlett in [BH], that the set of dominance-minimal elements is finite is viewed by
some to be a fundamental result (see [Cas], §4.7 of [BB]). Notable consequences of this finiteness
result are the so-called Parallel Wall Theorem (discussed in [BH], see also [Cap]) for the associated
Davis complex, as well as the fact that Coxeter groups are automatic [BH]. However, the above
definition of dominance does not extend nicely in the obvious way to the asymmetric setting: If
adjacent nodes γi and γj in (Γ, A) form an odd asymmetry, then by Theorem 3.2, αi and Kαi

are both positive roots for some positive K 6= 1. Then, each root would dominate the other, so
dominance would not be an anti-symmetric relation on Φ+.

In what follows, we address this issue. In the general setting, let Ψ+ := {S(α)}α∈Φ+ . For
α, β ∈ Φ+, say S(α) dominates S(β) and write S(α) dom S(β) if for all w ∈ W we have w.β ∈
Φ− whenever w.α ∈ Φ−. It is easy to see that this definition is independent of the choice of
representatives from each of S(α) and S(β), so dominance is a well-defined relation on Ψ+.

Theorem 3.13 Define a function ρ : Ψ+ −→ Φ+
std by the rule: ρ(S(α)) := w.αstd

i if α = w.αi ∈ Φ+

for some w ∈ W and i ∈ In. Then ρ is a well-defined bijection, and moreover ρ and ρ−1 both

preserve dominance. In particular, “dom” is a partial order on Ψ+ and the set of dominance-

minimal elements of Ψ+ is finite.

Proof. Obviously ρ is surjective if it is well-defined. To see that ρ is well-defined and injective,
we show that for any w1, w2 ∈ W and i, x ∈ In, we have w1.αi = Kw2.αx ∈ Φ+ for some K > 0
if and only if w1.α

std
i = w2.α

std
x ∈ Φ+

std. Now if w1.αi = Kw2.αx ∈ Φ+, then w.αi = Kαx for
w := (w2)−1w1. By Theorem 3.2, there is an ON-path P = [γi0=i, γi1 , . . . , γip−1 , γip=x] and ER-
sequences Sk rooted at γik (0 ≤ k ≤ p) such that w = wSp

vip,ip−1wSp−1
vip−1,ip−2 · · · vi2,i1wS1vi1,i0wS0 .

Using this expression for w, we can calculate that w.αstd
i = αstd

x . It follows that w1.α
std
i = w2.α

std
x ,

which is in Φ+
std by Proposition 2.1. The converse is entirely similar. Using Proposition 2.1, we
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have that w.αi ∈ Φ+ (respectively, Φ−) if and only if w.αstd
i ∈ Φ+

std (resp. Φ−std). It now follows
from the definitions that ρ and ρ−1 preserve dominance. So, “dom” is a partial order on Ψ+. That
the set of dominance-minimal elements of Ψ+ is finite now follows from Theorem 2.8 of [BH].

§4 An application concerning the Tits cone. We close with results which relate the size
of a Coxeter group W and the behavior of a “fundamental domain” for the “contragredient” W -
action. The main result of this section (Theorem 4.5) is derived in two ways as an application
of Corollary 3.10/Proposition 4.3: first using the perspective of the numbers game, and second
borrowing some results from [Vin]. We continue to consider σ : W → GL(V ). We have the natural
pairing 〈λ, v〉 := λ(v) for elements λ in the dual space V ∗ and vectors v in V . The contragredient
representation σ∗ := σ∗A : W → GL(V ∗) is determined by 〈σ∗(w)(λ), v〉 = 〈λ, σ(w−1)(v)〉. When
w ∈ W and λ ∈ V ∗, we write w.λ for σ∗(w)(λ). Let D := {λ ∈ V ∗ | 〈λ, αi〉 ≥ 0 for all i ∈ In}.
Following [Vin], [Erik1], [Erik2], the Tits cone is U := UA := ∪w∈WwD. This generalizes the
standard case of [Hum]. In view of Proposition 2.1, the results of [Hum] §5.13 hold here. So D is
the aforementioned fundamental domain, and U is a convex cone. Let U denote the closure of U .
See the lecture notes of Howlett [How] for further discussion of properties of the Tits cone for the
standard geometric representation σ, and in particular an investigation of phenomena in U \ U . If
T is any convex cone, let T0 denote the maximal subspace contained in T . It is not hard to see
that T0 = T ∩ (−T ).

Our Tits cone results below concern U0. These results both use/produce consequences from/for
the numbers game. Elements of V ∗ will be referred to as positions for (Γ, A). We define a process
of acting on positions in V ∗ with certain sequences of Coxeter group generators that is equivalent
to Eriksson’s numbers game as presented in §4.3 of [BB]. For a positive integer p we say a sequence
(γi1 , . . . , γip) from (Γ, A) is legal from a given position λ if 〈siq−1 · · ·si1 .λ, αiq〉 > 0 for all 1 ≤ q ≤ p.
Repeated application of Proposition 2.1 implies that in this case, sip · · ·si1 is reduced. Call this the
Reduced Word Result. Next, say a position λ is good if λ ∈ −D or there exists a legal sequence
(γi1 , . . . , γip) from λ such that sip · · ·si1 .λ ∈ −D. In the latter case say (γi1 , . . . , γip) is a terminated
legal sequence. Think of a good position as a position from which there is a (possibly empty)
terminated legal sequence. Eriksson’s Strong Convergence Theorem (see Theorem 2.2 of [Erik2])
shows that all legal sequences of maximal length from a good λ terminate at the same “terminal
position” in the same finite number of steps. Lemma 5.13 of [Hum] is the basis for an argument
in §4 of [Erik2] showing that if λ = w.µ for µ ∈ −D, then µ can be reached from λ by a legal
sequence. Then we get the following characterization of the set of good positions:

Proposition 4.1 (Eriksson) The set of good positions for (Γ, A) is precisely −U .

Our next result generalizes Remark 4.4 of [Deo] to our current setting. This is needed for
Proposition 4.3. For J ⊆ In, let ΦJ := {α ∈ Φ+ |α 6∈ spanR{αj}j∈J}.
Lemma 4.2 If (Γ, A) is connected, Φ is infinite, and J ⊂ In (proper), then ΦJ is infinite.

Proof: In the “(ix) ⇒ (ii)” part of the proof of Proposition 4.2 in [Deo], assume |ΦJ | < ∞ and
begin reading at line -8 of page 620.

Proposition 3.2 of [HRT] states that if (Γ, A) is connected, σ is standard, and W is infinite, then
U0 = {0}. In view of Corollary 3.10 and Lemma 4.2, we can use the proof of Proposition 3.2 of
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[HRT] verbatim to get the generalization of that result stated as Proposition 4.3 below. One can see
that that proof will work if it is known that all N(w) are finite; by Corollary 3.10 this is guaranteed
by our hypothesis in the statement of Proposition 4.3 requiring that (Γ, A) is unital ON-cyclic.

Proposition 4.3 Suppose (Γ, A) is connected and unital ON-cyclic and W is infinite. Then

U0 = {0}, i.e. U is a “strictly convex” cone.

In contrast, for finite W the overlap U0 = U ∩ (−U) is all of V ∗. This is a consequence of the
following result due to Vinberg (see §7 of [Vin]). The proof below uses numbers game reasoning.

Proposition 4.4 If W is finite, then U = V ∗ = −U , so U0 = V ∗.

Proof. Since W is finite, then by the Reduced Word Result it follows that the set of good positions
is all of V ∗. Proposition 4.1 now implies that V ∗ = −U , hence U = V ∗ also.

When (Γ, A) is connected and unital ON-cyclic, if a nonzero λ ∈ D is good, then by Propositions
4.1 and 4.3, W must be finite. This observation, together with the classification of finite Coxeter
groups and reasoning based on the numbers game, is used in §6 of [Don] to prove the following result,
which we refer to in Remark 4.7 below as result (*): If (Γ, A) is connected, then D ∩ (−U) 6= {0}
implies that W is finite. (We know of three proofs of statement (*): See Theorem 6.1 of [Don];
see Remark 4.7 below for a proof that uses Proposition 4.3, results borrowed from [Vin], and a
classification result due to H. S. M. Coxeter; or see §4 of [DE] for a proof that does not require
Proposition 4.3 or the classification of finite Coxeter groups.) Now, it follows from the definitions
that U0 6= {0} if and only if D∩(−U) 6= {0}. In view of Proposition 4.4, we thus obtain the following
addition to the list of equivalences from Propositions 4.1 and 4.2 of [Deo] for an irreducible Coxeter
group to be finite:

Theorem 4.5 Let (Γ, A) be connected, so the Coxeter group W is irreducible. Then W is finite

if and only if U0 6= {0} if and only if U0 = V ∗.

See §2 of [Kra] for a proof of this result in the special case that the bilinear form B for the
representing space V is symmetric.

Remark 4.6 A Tits cone is similarly defined in the context of Kac–Moody theory e.g. [Kac] §3.12,
[Kum] §1.4. Let A be a GCM. Here we follow Kac [Kac] and the end of §2 above. The Kac–Moody
Tits cone is the set C := CA := {w.λ |w ∈ W,λ ∈ hR such that αi(λ) ≥ 0 for 1 ≤ i ≤ n} ⊆ hR.
When A is nondegenerate (nullity(A) = 0), then V = h∗R and hence C and U coincide. Now
suppose (Γ, A) is connected and W is infinite. We have that the GCM graph (Γ, A) is unital
ON-cyclic. Thus if A is nondegenerate, the result C0 = {0} holds by Proposition 4.3. Allowing
nullity(A) ≥ 0, Kumar (personal communication) has supplied the following description of C0:
C0 = {v ∈ hR |αi(v) = 0 for 1 ≤ i ≤ n}. Here dim(C0) = nullity(A). He notes that this statement
may be deduced from Part (c) of Proposition 3.12 of [Kac]. Note that the topological interior of
the Kac–Moody Tits cone can never intersect its negative. This follows from [Kac] Exercise 3.15
(see also [Kum] Exercise 1.4.E.1).

Remark 4.7 In this remark we use Proposition 4.3 and results from [Vin] to prove the following
version of result (*) above: If (Γ, A) is connected, then W infinite implies that U0 = {0}. (Then,
Theorem 6.1 of [Don] can be obtained as an easy consequence.) To prove this, we interpret our
set-up here in terms of [Vin]. Assume throughout this remark that (Γ, A) is connected. Our V ∗
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plays the role of Vinberg’s V , our D plays the role of his K, our αi’s play the role of his αi’s. Let
us take elements hi ∈ V ∗ for which hi(αj) = aij for all i, j ∈ In. Each Ri := σ∗(si) ∈ GL(V ∗) is

then a reflection in the sense of §1 of [Vin]. From [Hum] §5.13, we know that w
◦
D ∩

◦
D= ∅ for all

w 6= ε in W , where
◦
D denotes the interior of D. Therefore our σ∗(W ) ⊂ GL(V ∗) is, in Vinberg’s

language, a “linear Coxeter group.”

With respect to some total ordering of In, think of an n-tuple v = (vi)i∈In as a column vector.
Denote by 0 the zero vector. For column vectors u,v, say u > v (respectively u ≥ v) if ui > vi

(resp. ui ≥ vi) for each i ∈ In. From §4 of [Vin] or Chapter 4 of [Kac], we have that exactly one of
the following three statements (+), (0), or (–) is true: (+) detA 6= 0; there exists v > 0 such that
Av > 0; Au ≥ 0 implies u > 0 or u = 0; (0) nullity(A) = 1; there exists v > 0 such that Av = 0;
Au = 0 implies that u ≥ 0; (–) There exists v > 0 such that Av < 0; Au ≥ 0, u ≥ 0 imply that
u = 0. Write A = A+, A = A0, or A = A− accordingly. By Lemma 15 and Proposition 25 of [Vin],
we see that A = A+ ⇒ U = V ∗, A = A0 ⇒ (U)0 = span(hi)i∈In , and A = A− ⇒ (U)0 = {0}.
(Note that the set “Ann[α]” in [Vin] is {0} here, since it is just {λ ∈ V ∗ |λ(v) = 0 for all v ∈ V }.)

Now we prove the version of result (*) stated at the beginning of this remark. We consider the
three cases (+), (0), and (–). First, suppose A = A+. Then by Proposition 22 of [Vin], W must
be finite, contrary to our hypothesis. Second, suppose that A = A0. Then by Proposition 23 of
[Vin], W is an irreducible “parabolic” Coxeter group, also called an irreducible Euclidean reflection
group, see e.g. [Dav]. The well-known classification of such groups is due to H. S. M. Coxeter [Cox].
For our purposes, it is enough to observe that any such (Γ, A) will possess a simple ON-cycle only
in the case that (Γ, A) itself is a simple ON-cycle with mij = 3 for any adjacent γi and γj . By
Proposition 23 of [Vin], it follows that this ON-cycle is unital. We conclude that whenever A = A0,
(Γ, A) is unital ON-cyclic. Since W is infinite (by, say, Proposition 22 of [Vin]), then by Proposition
4.3 above, we have U0 = {0}. Finally, if A = A−, then (U)0 = {0} implies that U0 = {0}. (Note
that W must infinite whenever A = A−, by Proposition 22 of [Vin].) In any case, we see that when
(Γ, A) is connected and W is infinite, then U0 = {0}.

Example 4.8 For (Γ, A) = r
γ1

r
γ2

- �
p q with pq = 4, we have that W is the infinite dihedral

group. Since A = A0 in the notation of Remark 4.7, then (U)0 = span(hi)i∈{1,2}. Relative to the
basis {ωi}i=1,2 for V ∗ dual to the simple root basis {αi}i=1,2 for V , we have h1 = 2ω1 − pω2 and
h2 = −qω1+2ω2 = − q

2h1. Then, (U)0 = span(hi)i∈{1,2} = {xω1+yω2 | y = −p
2x}. In fact, using the

computational approach of the proof of Lemma 3.1 above, one can see that U = {xω1 + yω2 | y >
−p

2x or x = y = 0}, and hence that U0 = {0}.
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