
Analogies: Calc I/II concepts in comparison with analogous Calc III concepts
Rob Donnelly

From Murray State University’s Calculus III, Fall 2001

As any Calculus III student will know, mathematical structures build upon themselves,
creating in mathematics a taut interdependence of ideas unlike many other disciplines. To
help calculus students better understand this interdependence, I thought that it would be
appropriate to compare and contrast fundamental ideas encountered in pre-calculus, Calculus
I/II, and Calculus III.

Pre-calc/Calc I/Calc II Calculus III

Line: y = mx + b
A(x− x0) + B(y − y0) = 0

Line: r(t) = tv + r0

Plane: a(x−x0)+ b(y−y0)+ c(z− z0) = 0

Derivative for y = f(x):
dy

dx
= f ′(x)

Derivative for curve r(t) = 〈x(t), y(t), z(t)〉:
r′(t) = 〈x′(t), y′(t), z′(t)〉

Derivatives for a surface z = f(x, y)

∂z

∂x
,

∂z

∂y
, and the directional derivative

Du(f)(x, y) = ∇f(x, y) · u

Tangent line:
y − y0 = f ′(x0)(x− x0)

Tangent line for a curve r(t):
s(t) = tr′(t0) + r0

Tangent plane for a surface z = f(x, y):
z − z0 = fx(x0, y0)(x− x0) +

fy(x0, y0)(y − y0)

Tangent vector for y = f(x) at x = x0:
〈1, f ′(x0)〉

Normal vector for y = f(x) at x = x0:
〈−f ′(x0), 1〉

Tangent vectors for z = f(x, y)
at (x, y) = (x0, y0):

〈1, 0, ∂f
∂x

(x0, y0)〉

〈0, 1, ∂f
∂y

(x0, y0)〉

Normal vectors for z = f(x, y)
at (x, y) = (x0, y0):

〈−∂f
∂x

, −∂f
∂y

, 1〉 “Upward normal”

〈∂f
∂x

, ∂f
∂y

, −1〉 “Downward normal”



Pre-calc/Calc I/Calc II Calculus III

Two curves f(x) and g(x) are “the same”
if f ′(x) = g′(x)

Two curves r(t) and s(t) are “the same” if
and only if they have the same curvature
and torsion.

Two plane curves r(t) and s(t) are “the
same” if and only if they have the same
curvature.

Local extreme values:

If f(x) has a local max or local min at
x = c, and if f ′(c) exists, then f ′(c) =
0.

Local extreme values:

If f(x, y) has a local max or local
min at x = a, y = b, and if fx(a, b)
and fy(a, b) exist, then fx(a, b) =
fy(a, b) = 0.

Continuous functions on closed, bounded
intervals:

If y = f(x) is continuous on [a, b], then
f achieves an absolute max and an
absolute min, and moreover these ex-
treme values occur at critical points or
endpoints.

Continuous functions on closed, bounded
regions:

If z = f(x, y) is continuous on a closed,
bounded region D, then f achieves an
absolute max and an absolute min,
and moreover these extreme values
occur at critical points or boundary
points.

Second derivative test:

If f ′(c) = 0 and f ′′(c) > 0, then f has
a local min at x = c. If f ′(c) = 0 and
f ′′(c) < 0, then f has a local max at
x = c. If f ′(c) = 0 and f ′′(c) = 0, the
test is inconclusive.

Second derivatives test:

If fx(a, b) = fy(a, b) = 0, then let

D = fxx(a, b)fyy(a, b)− [fxy(a, b)]2.

If D > 0 and fxx(a, b) > 0, then f has
a local min at x = a, y = b. If D > 0
and fxx(a, b) < 0, then f has a local
max at x = a, y = b. If D < 0, then
f has a saddle point at x = a, y = b.
Otherwise the test is inconclusive.



Pre-calc/Calc I/Calc II Calculus III

Chain Rule for y = f(x) with x = g(t):

dy

dt
=

dy

dx

dx

dt
= f ′(g(t)) g′(t)

Chain Rule for z = f(x, y) with x = g(t)
and y = h(t):

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

= fx g′(t) + fy h′(t)

Rate of change

d

dx
f(x) = lim

h→0

f(x + h)− f(x)

h

d

dx
: function 7−→ function

Rates of change

∂

∂x
f(x, y, z) = lim

h→0

f(x + h, y, z)− f(x, y, z)
h

∂

∂x
: function 7−→ function

∇ f = 〈∂f

∂x
,

∂f

∂y
,

∂f

∂z
〉

∇ : function 7−→ vector field

divF =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

div : vector field 7−→ function

curlF =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣
curl : vector field 7−→ vector field



Pre-calc/Calc I/Calc II Calculus III

Definite integral

∫ b

a

f(x) dx

Line integral

∫
C

f ds

Double integral

∫∫
D

f(x, y) dA

Surface integral

∫∫
S

f(x, y, z) dS

Triple integral

∫∫∫
E

f(x, y, z) dV

Length of interval:

∫ b

a

1 dx

Length of curve:

∫
C

1 ds

Area of region:

∫∫
D

1 dA

Surface area

∫∫
S

1 dS

Volume of region:

∫∫∫
E

1 dV

Mass of straight, thin rod with density
function ρ(x):∫ b

a

ρ(x) dx

Mass of thin wire with shape C and density
function ρ:∫

C

ρ ds

Mass of thin lamina with density function
ρ(x, y):∫∫

D

ρ(x, y) dA

Mass of thin surface with shape S and den-
sity function ρ:∫∫

S

ρ dS

Mass of solid of shape E with density func-
tion ρ(x, y, z):∫∫∫

E

ρ(x, y, z) dV



Pre-calc/Calc I/Calc II Calculus III

Probability density function f(x) for a con-
tinuous random variable X:

Probability density function f(x, y) for two
continuous random variables X and Y :∫ ∞

−∞
f(x) dx = 1

∫∫
R2

f(x, y) dA = 1

Prob(a ≤ X ≤ b) =

∫ b

a

f(x) dx Prob( (X, Y ) ∈ D) =

∫∫
D

f(x, y) dA

Mean (expected value) =

∫ ∞

−∞
xf(x) dx

X-mean =

∫∫
R2

xf(x, y) dA

Y -mean =

∫∫
R2

yf(x, y) dA

Moment about origin

=

∫ ∞

−∞
x2f(x) dx

X-moment about origin

=

∫∫
R2

x2f(x, y) dA

Y -moment about origin

=

∫∫
R2

y2f(x, y) dA

Density function ρ(x) for a thin, straight
rod:

Density function ρ(x, y) for a thin lamina:

Total mass =

∫ b

a

ρ(x) dx Total mass =

∫∫
D

ρ(x, y) dA

Moment My =

∫ b

a

xρ(x) dx

Moment My =

∫∫
D

xρ(x, y) dA

Moment Mx =

∫∫
D

yρ(x, y) dA

Moment of inertia Iy =

∫ b

a

x2ρ(x) dx

Moment of inertia Iy

=

∫∫
D

x2ρ(x, y) dA

Moment of inertia Ix

=

∫∫
D

y2ρ(x, y) dA

Center of mass x = My/(Total mass)

Center of mass (x, y)

x = My/(Total mass)

y = Mx/(Total mass)



Pre-calc/Calc I/Calc II Calculus III

Change of variables:∫ b

a

f(x) dx =

∫ d

c

f(x(u))
dx

du
du

Change of variables:∫∫
D

f(x, y) dA =∫∫
S

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv

Antiderivatives:

An antiderivative for g(x) is a function
f(x) whose derivative is g:

f ′(x) = g(x)

Potential functions:

Let F(x, y, z) be a vector field. A
potential function for F is a function
f(x, y, z) whose gradient is F:

∇f(x, y, z) = F(x, y, z)

Work done in moving an object in a
straight line with force F (x):∫ b

a

F (x) dx

Work done in moving an object through a
force field F(x, y, z) along a curve C:∫

C

F · dr

Fundamental Theorem of Calculus:∫ b

a

f ′(x) dx = f(b)− f(a)

Fundamental Theorem for Line Integrals:

Let C be a spacecurve with parame-
terization r(t) = 〈x(t), y(t), z(t)〉 for
a ≤ t ≤ b. Let f(x, y, z) be a func-
tion whose domain is a region E in R3

which contains C.∫
C

∇f · dr

=

∫ b

a

∇f(x(t), y(t), z(t)) · r′(t)dt

= f(r(b))− f(r(a))


