Analogies: Calc I/II concepts in comparison with analogous Calc III concepts Rob Donnelly
 From Murray State University's Calculus III, Fall 2001

As any Calculus III student will know, mathematical structures build upon themselves, creating in mathematics a taut interdependence of ideas unlike many other disciplines. To help calculus students better understand this interdependence, I thought that it would be appropriate to compare and contrast fundamental ideas encountered in pre-calculus, Calculus I/II, and Calculus III.

Pre-calc/Calc I/Calc II	Calculus III
Line: $\begin{aligned} & y=m x+b \\ & A\left(x-x_{0}\right)+B\left(y-y_{0}\right)=0 \end{aligned}$	Line: $\mathbf{r}(t)=t \mathbf{v}+\mathbf{r}_{0}$ Plane: $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$
Derivative for $y=f(x)$: $\frac{d y}{d x}=f^{\prime}(x)$	Derivative for curve $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$: $\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle$ Derivatives for a surface $z=f(x, y)$ $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$, and the directional derivative $D_{\mathbf{u}}(f)(x, y)=\nabla f(x, y) \cdot \mathbf{u}$
Tangent line: $y-y_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$	Tangent line for a curve $\mathbf{r}(t)$: $\mathbf{s}(t)=t \mathbf{r}^{\prime}\left(t_{0}\right)+\mathbf{r}_{0}$ Tangent plane for a surface $z=f(x, y)$: $\begin{aligned} & z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+ \\ & f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \end{aligned}$
Tangent vector for $y=f(x)$ at $x=x_{0}$: $\left\langle 1, f^{\prime}\left(x_{0}\right)\right\rangle$ Normal vector for $y=f(x)$ at $x=x_{0}$: $\left\langle-f^{\prime}\left(x_{0}\right), 1\right\rangle$	Tangent vectors for $z=f(x, y)$ at $(x, y)=\left(x_{0}, y_{0}\right)$: $\begin{aligned} & \left\langle 1,0, \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right\rangle \\ & \left\langle 0,1, \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right\rangle \end{aligned}$ Normal vectors for $z=f(x, y)$ at $(x, y)=\left(x_{0}, y_{0}\right)$: $\left\langle-\frac{\partial f}{\partial x},-\frac{\partial f}{\partial y}, 1\right\rangle$ "Upward normal" $\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},-1\right\rangle$ "Downward normal"

Pre-calc/Calc I/Calc II
Two curves $f(x)$ and $g(x)$ are "the same"
if $f^{\prime}(x)=g^{\prime}(x)$

Local extreme values:
If $f(x)$ has a local max or local min at $x=c$, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=$ 0.

Two curves $\mathbf{r}(t)$ and $\mathbf{s}(t)$ are "the same" if and only if they have the same curvature if $f^{\prime}(x)=g^{\prime}(x)$ and torsion.

Two plane curves $\mathbf{r}(t)$ and $\mathbf{s}(t)$ are "the same" if and only if they have the same curvature.

Local extreme values:
If $f(x, y)$ has a local max or local \min at $x=a, y=b$, and if $f_{x}(a, b)$ and $f_{y}(a, b)$ exist, then $f_{x}(a, b)=$ $f_{y}(a, b)=0$.

Continuous functions on closed, bounded intervals:

If $y=f(x)$ is continuous on $[a, b]$, then f achieves an absolute max and an absolute min, and moreover these extreme values occur at critical points or endpoints.

Continuous functions on closed, bounded regions:

If $z=f(x, y)$ is continuous on a closed, bounded region D, then f achieves an absolute max and an absolute min, and moreover these extreme values occur at critical points or boundary points.

Second derivatives test:
If $f_{x}(a, b)=f_{y}(a, b)=0$, then let

$$
D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2} .
$$

If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local min at $x=c$. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local max at $x=c$. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)=0$, the test is inconclusive.

If $D>0$ and $f_{x x}(a, b)>0$, then f has a local min at $x=a, y=b$. If $D>0$ and $f_{x x}(a, b)<0$, then f has a local \max at $x=a, y=b$. If $D<0$, then f has a saddle point at $x=a, y=b$. Otherwise the test is inconclusive.

Pre-calc/Calc I/Calc II	Calculus III
Chain Rule for $y=f(x)$ with $x=g(t)$: $\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=f^{\prime}(g(t)) g^{\prime}(t)$	Chain Rule for $z=f(x, y)$ with $x=g(t)$ and $y=h(t)$: $\begin{aligned} \frac{d z}{d t} & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\ & =f_{x} g^{\prime}(t)+f_{y} h^{\prime}(t) \end{aligned}$
	Rates of change $\begin{aligned} & \frac{\partial}{\partial x} f(x, y, z)=\lim _{h \rightarrow 0} \frac{f(x+h, y, z)-f(x, y, z)}{h} \\ & \frac{\partial}{\partial x}: \text { function } \longmapsto \text { function } \end{aligned}$
Rate of change $\frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$	$\begin{aligned} & \nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle \\ & \nabla: \text { function } \longmapsto \text { vector field } \end{aligned}$
$\frac{d}{d x}: \text { function } \longmapsto \text { function }$	$\operatorname{div} \mathbf{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$ div : vector field \longmapsto function $\operatorname{curl} \mathbf{F}=\left\|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array}\right\|$ curl : vector field \longmapsto vector field

Pre-calc/Calc I/Calc II	Calculus III
Definite integral $\int_{a}^{b} f(x) d x$	Line integral $\int_{C} f d s$ Double integral $\iint_{D} f(x, y) d A$ Surface integral $\iint_{S} f(x, y, z) d S$ Triple integral $\iiint_{E} f(x, y, z) d V$
Length of interval: $\int_{a}^{b} 1 d x$	Length of curve: $\int_{C} 1 d s$ Area of region: $\iint_{D} 1 d A$ Surface area $\iint_{S} 1 d S$ Volume of region: $\iiint_{E} 1 d V$
Mass of straight, thin rod with density function $\rho(x)$: $\int_{a}^{b} \rho(x) d x$	Mass of thin wire with shape C and density function ρ : $\int_{C} \rho d s$ Mass of thin lamina with density function $\rho(x, y)$: $\iint_{D} \rho(x, y) d A$ Mass of thin surface with shape S and density function ρ : $\iint_{S} \rho d S$ Mass of solid of shape E with density function $\rho(x, y, z)$: $\iiint_{E} \rho(x, y, z) d V$

Pre-calc/Calc I/Calc II
Probability density function $f(x)$ for a con-

Calculus III

Probability density function $f(x, y)$ for two continuous random variables X and Y :

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

$$
\iint_{\mathbb{R}^{2}} f(x, y) d A=1
$$

$$
\operatorname{Prob}(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Mean $($ expected value $)=\int_{-\infty}^{\infty} x f(x) d x$

Moment about origin

$$
=\int_{-\infty}^{\infty} x^{2} f(x) d x
$$

$$
\begin{aligned}
& \operatorname{Prob}((X, Y) \in D)=\iint_{D} f(x, y) d A \\
& X \text {-mean }=\iint_{\mathbb{R}^{2}} x f(x, y) d A \\
& Y \text {-mean }=\iint_{\mathbb{R}^{2}} y f(x, y) d A
\end{aligned}
$$

X-moment about origin

$$
=\iint_{\mathbb{R}^{2}} x^{2} f(x, y) d A
$$

Y-moment about origin

$$
=\iint_{\mathbb{R}^{2}} y^{2} f(x, y) d A
$$

Density function $\rho(x)$ for a thin, straight rod:

Total mass $=\int_{a}^{b} \rho(x) d x$

Moment $M_{y}=\int_{a}^{b} x \rho(x) d x$

Moment of inertia $I_{y}=\int_{a}^{b} x^{2} \rho(x) d x$

Center of mass $\bar{x}=M_{y} /($ Total mass $)$

Density function $\rho(x, y)$ for a thin lamina:

Total mass $=\iint_{D} \rho(x, y) d A$
Moment $M_{y}=\iint_{D} x \rho(x, y) d A$
Moment $M_{x}=\iint_{D} y \rho(x, y) d A$
Moment of inertia I_{y}

$$
=\iint_{D} x^{2} \rho(x, y) d A
$$

Moment of inertia I_{x}

$$
=\iint_{D} y^{2} \rho(x, y) d A
$$

Center of mass (\bar{x}, \bar{y})

$$
\begin{aligned}
& \bar{x}=M_{y} /(\text { Total mass }) \\
& \bar{y}=M_{x} /(\text { Total mass })
\end{aligned}
$$

Pre-calc/Calc I/Calc II	Calculus III
Change of variables: $\int_{a}^{b} f(x) d x=\int_{c}^{d} f(x(u)) \frac{d x}{d u} d u$	Change of variables: $\begin{aligned} & \iint_{D} f(x, y) d A= \\ & \iint_{S} f(x(u, v), y(u, v))\left\|\frac{\partial(x, y)}{\partial(u, v)}\right\| d u d v \end{aligned}$
Antiderivatives: An antiderivative for $g(x)$ is a function $f(x)$ whose derivative is g : $f^{\prime}(x)=g(x)$	Potential functions: Let $\mathbf{F}(x, y, z)$ be a vector field. A potential function for \mathbf{F} is a function $f(x, y, z)$ whose gradient is \mathbf{F} : $\nabla f(x, y, z)=\mathbf{F}(x, y, z)$
Work done in moving an object in a straight line with force $F(x)$: $\int_{a}^{b} F(x) d x$	Work done in moving an object through a force field $\mathbf{F}(x, y, z)$ along a curve C : $\int_{C} \mathbf{F} \cdot d \mathbf{r}$
Fundamental Theorem of Calculus: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$	Fundamental Theorem for Line Integrals: Let C be a spacecurve with parameterization $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ for $a \leq t \leq b$. Let $f(x, y, z)$ be a function whose domain is a region E in \mathbb{R}^{3} which contains C. $\begin{aligned} \int_{C} & \nabla f \cdot d \mathbf{r} \\ & =\int_{a}^{b} \nabla f(x(t), y(t), z(t)) \cdot \mathbf{r}^{\prime}(t) d t \\ & =f(\mathbf{r}(b))-f(\mathbf{r}(a)) \end{aligned}$

