Lie algebra representations Rob Donnelly April 7, 2006

Here's what I hope was accomplished in two prior talks:

- We defined a Lie algebra as a vector space \mathfrak{g} over a ground field \mathbb{F} (for us, \mathbb{R} or \mathbb{C}) equipped with a bilinear, anticommutative, "Jacobi-associative" multiplication operation $[,]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$.
- We looked at many families of matrix Lie algebras, including the following:
 - 1. The general linear Lie algebras $\mathfrak{gl}(n, \mathbb{F})$ and $\mathfrak{gl}(V)$:

 $\mathfrak{gl}(n,\mathbb{F}) = \{n \times n \text{ matrices } A \text{ over } \mathbb{F}\}, \text{ where } [A,B] := AB - BA$

 $\mathfrak{gl}(V) := \{ \text{linear transformations } T : V \to V \}, \text{ where } [S, T] := ST - TS,$

where V is a vector space over the ground field \mathbb{F} .

2. The special linear Lie algebra $\mathfrak{sl}(n,\mathbb{F})$ (a Lie subalgebra of $\mathfrak{gl}(n,\mathbb{F})$):

 $\mathfrak{sl}(n,\mathbb{F}) = \{n \times n \text{ matrices } A \text{ over } \mathbb{F} \text{ with } \operatorname{trace}(A) = 0\}$

3. The orthogonal Lie algebra $\mathfrak{so}(n,\mathbb{F})$ (a Lie subalgebra of $\mathfrak{gl}(n,\mathbb{F})$):

 $\mathfrak{so}(n,\mathbb{F}) = \{A \in \mathfrak{gl}(n,\mathbb{F}) \mid A \text{ is skew-symmetric}\}\$

4. The special unitary Lie algebra $\mathfrak{su}_n = \mathfrak{su}(n, \mathbb{C})$ (a real Lie subalgebra of $\mathfrak{gl}(n, \mathbb{C})$):

 $\mathfrak{su}(n,\mathbb{C}) = \{A \in \mathfrak{gl}(n,\mathbb{C}), | A \text{ is skew-Hermitian} \}$

We saw that $\mathfrak{su}(2,\mathbb{C}) \approx (\mathbb{R}^3, \times)$.

- We considered a class of complex Lie algebras defined by generators and relations, the Kac-Moody Lie algebras. We start with a "GCM graph" (Γ , A), where Γ is a finite simple graph and the matrix A is a "Generalized Cartan Matrix," a sort of adjacency matrix for the graph Γ . There are three generators (which span a subalgebra isomorphic to $\mathfrak{sl}(2, \mathbb{C})$) attached to each node of the graph Γ . The relations are determined by the the GCM graph particularly the "intertwining" and "finiteness" relations as illustrated in some examples below.
- In my talk at the Kentucky MAA meeting, I discussed a game played on GCM graphs and answered a finiteness question about this game. The answer is a classification by Dynkin diagrams, and leads to a classification of finite-dimensional Kac-Moody Lie algebras and finite Weyl groups. We will assume the following related result in this talk:

Classification of Simple Lie Algebras (Cartan, Serre, Kac etc) The finite-dimensional simple Lie algebras are precisely the finite-dimensional Kac-Moody Lie algebras $\mathfrak{g}(\Gamma, A)$ whose GCM graphs are connected Dynkin diagrams from our irredundant list.

From generators and relations to concrete realizations:

Example 1 For the one-node GCM graph A_1 we have the Lie algebra

$$\mathfrak{g}(A_1) = \langle x, y, h \mid [x, y] = h, [h, x] = 2x, [h, y] = -2y \rangle$$

As discussed last time, the Lie algebra homomorphism $\mathfrak{g}(A_1) \xrightarrow{\phi} \mathfrak{sl}(2,\mathbb{C})$ induced by

$$x \mapsto \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \quad y \mapsto \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) \quad h \mapsto \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

yields an isomorphism of Lie algebras, so $\mathfrak{g}(A_1) \approx \mathfrak{sl}(2, \mathbb{C})$.

Example 2 For the two node GCM graph $A_2 = \bullet \bullet \bullet \bullet \bullet$ we have the Lie algebra

$$\mathfrak{g}(A_2) = \langle x_1, y_1, h_1, x_2, y_2, h_2 \mid \text{"Serre" relations } \rangle,$$

where the Serre relations in this case are:

"sı(2, C)" relations: $[x_1, y_1] = h_1$, $[h_1, x_1] = 2x_1$, $[h_1, y_1] = -2y_1$, $[x_2, y_2] = h_2$, $[h_2, x_2] = 2x_2$, $[h_2, y_2] = -2y_2$.

"Commuting" relations: $[h_1, h_2] = 0, [x_1, y_2] = 0, [x_2, y_1] = 0.$

"Intertwining" relations: $[h_1, x_2] = -x_2, [h_1, y_2] = y_2, [h_2, x_1] = -x_1, [h_2, y_1] = y_1$

"Finiteness" relations: $[x_1, [x_1, x_2]] = [x_2, [x_2, x_1]] = [y_1, [y_1, y_2]] = [y_2, [y_2, y_1]] = 0.$

Consider the Lie algebra homomorphism $\mathfrak{g}(A_2) \xrightarrow{\phi} \mathfrak{gl}(3, \mathbb{C})$ induced by

$$x_{1} \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad y_{1} \mapsto \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad h_{1} \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$x_{2} \mapsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad y_{2} \mapsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad h_{2} \mapsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

To confirm that this indeed induces a Lie algebra homomorphism, check that the image matrices preserve the above relations. Since the image matrices all have trace zero, then $\operatorname{im}(\phi) \subseteq \mathfrak{sl}(3, \mathbb{C})$. In fact, in a prior talk we saw that these matrices generate all of $\mathfrak{sl}(3, \mathbb{C})$, so $\operatorname{im}(\phi) = \mathfrak{sl}(3, \mathbb{C})$. By the Classification of simple Lie algebras, since $\mathfrak{g}(A_2)$ is simple, then ϕ is injective, and therefore $\mathfrak{g}(A_2) \approx \mathfrak{sl}(3, \mathbb{C})$.

In a similar way, $\mathfrak{g}(A_n) \approx \mathfrak{sl}(n+1, \mathbb{C})$.

Example 3 For the two node GCM graph " B_2 " = $\bullet \to \bullet \bullet$ (this is the same as C_2 , but for now we'll write it this way) we have the Lie algebra

 $\mathfrak{g}("B_2") = \langle x_1, y_1, h_1, x_2, y_2, h_2 \mid "Serre" relations \rangle,$

where the Serre relations in this case are:

"sı(2, C)" relations: $[x_1, y_1] = h_1, [h_1, x_1] = 2x_1, [h_1, y_1] = -2y_1,$ $[x_2, y_2] = h_2, [h_2, x_2] = 2x_2, [h_2, y_2] = -2y_2.$

"Commuting" relations: $[h_1, h_2] = 0, [x_1, y_2] = 0, [x_2, y_1] = 0.$

"Intertwining" relations: $[h_1, x_2] = -x_2$, $[h_1, y_2] = y_2$, $[h_2, x_1] = -2x_1$, $[h_2, y_1] = 2y_1$

"Finiteness" relations: $[x_1, [x_1, x_2]] = [x_2, [x_2, [x_2, x_1]]] = [y_1, [y_1, y_2]] = [y_2, [y_2, [y_2, y_1]]] = 0.$

Consider the Lie algebra homomorphism $\mathfrak{g}("B_2") \xrightarrow{\phi} \mathfrak{gl}(5,\mathbb{C})$ induced by

To confirm that this indeed induces a Lie algebra homomorphism, check that the image matrices preserve the above relations. Since the image matrices all have trace zero, then $\operatorname{im}(\phi) \subseteq \mathfrak{sl}(5, \mathbb{C})$. In fact, in a prior talk we saw that these matrices generate all of $\mathfrak{g}_{M'}$, where

is congruent to M = I over \mathbb{C} . Then we have $\operatorname{im}(\phi) = \mathfrak{g}_{M'} \approx \mathfrak{so}(5, \mathbb{C})$. By the Classification of simple Lie algebras, since $\mathfrak{g}("B_2")$ is simple, then ϕ is injective, and therefore $\mathfrak{g}("B_2") \approx \mathfrak{so}(5, \mathbb{C})$.

In a similar way,
$$\mathfrak{g}(B_n) \approx \mathfrak{so}(2n+1,\mathbb{C})$$
.

Example 4 A combinatorial representation of $\mathfrak{g}(A_1) \approx \mathfrak{sl}(2, \mathbb{C})$:

Let $\mathfrak{B}_n := \{ \text{subsets of } \{1, 2, \dots, n\} \}$. Let $V = V[\mathfrak{B}_n] = \text{span}_{\mathbb{C}} \{ v_S \mid S \in \mathfrak{B}_n \}$, a 2ⁿ-dimensional complex vector space. Define linear transformations X, Y, and H on V as follows:

$$\begin{aligned} X(v_S) &:= \sum_{T \in \mathfrak{B}_n, T \supseteq S, |T \setminus S| = 1} v_T \\ Y(v_S) &:= \sum_{R \in \mathfrak{B}_n, R \subseteq S, |S \setminus R| = 1} v_R \\ H &:= [X, Y] \end{aligned}$$

Claim 1: $H(v_S) = (2|S| - n)v_S$

Claim 2: $[HX](v_S) = 2X(v_S)$

Claim 3: $[HY](v_S) = -2Y(v_S)$

So there is a Lie algebra homomorphism $\mathfrak{g}(A_1) \xrightarrow{\phi} \mathfrak{gl}(V)$ induced by $x \mapsto X, y \mapsto Y$, and $h \mapsto H$.

This can be visualized as follows: Regard \mathfrak{B}_n to be a partially ordered set with respect to subset containment " \subseteq ," that is, we have $S \subseteq T$ for $S, T \in \mathfrak{B}_n$ iff S is a subset of T when we think of S and T as subsets of $\{1, 2, \ldots, n\}$.

Below is a picture of \mathfrak{B}_3 with respect to this partial ordering. In this graph, an edge connects a subset S of $\{1, 2, 3\}$ to a subset T (with S below T) if $T \setminus S$ is a single element from $\{1, 2, 3\}$.

The "Boolean Lattice" \mathfrak{B}_3

We can view the action of $\mathfrak{g}(A_1)$ on \mathfrak{B}_n in the following way: X takes the basis vector at a given vertex to the sum of the basis vectors above the given vertex; Y takes the basis vector at a given vertex to the sum of the basis vectors below the given vertex; and each basis vector is an eigenvector for H where the eigenvalue is "twice the rank of the vertex minus the length of the poset."

Representations and modules (i.e. Lie algebra actions):

- Although the following definitions work over arbitrary fields and vector spaces of any dimension, from here on our focus will be on finite-dimensional complex representations.
- A representation of a Lie algebra \mathfrak{g} is a Lie algebra homomorphism

$$\phi: \mathfrak{g} \longrightarrow \mathfrak{gl}(V) \quad (\text{or } \mathfrak{gl}(d, \mathbb{C})),$$

where V is an \mathbb{C} -vector space of dimension d. For x in g and $v \in V$, write $x.v := \phi(x)(v)$. Then:

(1)
$$(ax + by).v = a(x.v) + b(y.v)$$

(2) $x.(av + bw) = a(x.v) + b(x.w)$
(3) $[x, y].v = x.y.v - y.x.v$

for all $x, y \in \mathfrak{g}$, $a, b \in \mathbb{C}$, and $v, w \in V$.

• If V is an C-vector space of dimension d with an operation $\mathfrak{g} \times V \to V$ denoted $(x, v) \mapsto x.v$ and satisfying (1), (2), and (3) above, then we say V (together with the operation) is a <u> \mathfrak{g} -module</u>. In this case define $\phi : \mathfrak{g} \to \mathfrak{gl}(V)$ by the rule $\phi(x)(v) = x.v$ for all $x \in \mathfrak{g}$ and $v \in V$. Check that ϕ is a Lie algebra homomorphism. So we see that representations of \mathfrak{g} and \mathfrak{g} -modules are different language for the same phenomena. We'll use both in what follows.

- Suppose V and W are \mathfrak{g} -modules. Then we can create the following new \mathfrak{g} -modules:
 - $-V \bigoplus W$ is a g-module via x.(v,w) := (x.v, x.w).
 - $-V \bigotimes W$ is a g-module via $x.(v \otimes w) := (x.v) \otimes w + v \otimes (x.w)$ (for simple tensors).
 - $-V^*$ is a g-module via (x.f)(v) := -f(x.v), where $f: V \to \mathbb{F}$ is a linear functional in the dual space V^* .
- Suppose V is a g-module, and suppose W is a subspace of V such that $x.w \in W$ for all $x \in \mathfrak{g}$ and $w \in W$. Then we say that W is a g-stable subspace of V.

The g-module V is <u>irreducible</u> if V has no g-stable subspaces other than $\{0\}$ and V.

The \mathfrak{g} -module V is <u>completely irreducible</u> if for any \mathfrak{g} -stable subspace W of V there is a \mathfrak{g} -stable subspace W' of V so that $V = W \bigoplus W'$.

• We say V and W are isomorphic g-modules if there is a linear transformation $\psi: V \to W$ such that $\psi(x.v) = x.\psi(v)$ for all $x \in \mathfrak{g}$ and all $v \in V$.

Complex semisimple Lie algebras:

From here on our Lie algebras are complex. Continue with the assumption that representations are complex and finite-dimensional.

We say a Lie algebra \mathfrak{g} is semisimple $\stackrel{\text{(def)}}{\iff} \mathfrak{g} \approx \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_k$, where each \mathfrak{g}_i is simple.

Observation Let \mathfrak{g} be semisimple, and let $\phi : \mathfrak{g} \to \mathfrak{gl}(V)$ be a representation of \mathfrak{g} . Then $\phi(\mathfrak{g}) \subseteq \mathfrak{sl}(V)$ (i.e. the image of \mathfrak{g} is a collection of trace zero endomorphisms).

Proof. If \mathfrak{g} is simple then $[\mathfrak{g},\mathfrak{g}] = \mathfrak{g}$. Now check that if \mathfrak{g} is semisimple, then $[\mathfrak{g},\mathfrak{g}] = \mathfrak{g}$. If $z \in \mathfrak{g}$, then $z = \sum c_i[x_i, y_i]$. Then $\phi(z) = \sum c_i(\phi(x_i)\phi(y_i) - \phi(y_i)\phi(x_i))$, and hence $\operatorname{trace}(\phi(z)) = 0$.

The following comments are intended to suggest why it is reasonable in studying Lie algebra representations to restrict our attention to semisimple Lie algebras.

We say a Lie algebra \mathfrak{g} is <u>solvable</u> $\stackrel{\text{(def)}}{\iff}$ the following sequence of subspaces is eventually the zero subspace: $\mathfrak{g}^{(0)} := \mathfrak{g}, \mathfrak{g}^{(1)} := [\mathfrak{g}, \mathfrak{g}], \mathfrak{g}^{(2)} := [\mathfrak{g}^{(1)}, \mathfrak{g}^{(1)}], \dots, \mathfrak{g}^{(i)} := [\mathfrak{g}^{(i-1)}, \mathfrak{g}^{(i-1)}],$ etc. An abelian Lie algebra is solvable, and so is the matrix subalgebra $\{A \in \mathfrak{gl}(n, \mathbb{C}) \mid A \text{ is upper triangular}\}.$

Lie's Theorem Suppose \mathfrak{s} is a solvable Lie algebra, and suppose $\phi : \mathfrak{s} \to \mathfrak{gl}(V)$ is a representation of \mathfrak{s} $(V \neq 0)$. Then there exists a common eigenvector for the actions of all the elements $\phi(x)$ in $\phi(\mathfrak{s})$.

Notice what this says about irreducible modules for solvable Lie algebras: they are all one-dimensional.

Levi's Theorem Given a Lie algebra \mathfrak{g} , there exists a semisimple Lie subalgebra \mathfrak{g}_{ss} and a solvable Lie subalgebra \mathfrak{s} such that $\mathfrak{g} \approx \mathfrak{g}_{ss} \oplus \mathfrak{s}$. Moreover, if V is an irreducible \mathfrak{g} -module, then $V \approx W \bigotimes V_0$ (an isomorphism of \mathfrak{g} -modules), where W is an irreducible \mathfrak{g}_{ss} -module, V_0 is a (one-dimensional) irreducible \mathfrak{s} -module, the the action of \mathfrak{g}_{ss} on V_0 is trivial, and the action of \mathfrak{s} on W is trivial.

Weyl's Theorem (Complete Reducibility) If \mathfrak{g} is semisimple and V is a \mathfrak{g} -module, then V is completely reducible. (Then V has a unique decomposition as a sum of irreducible \mathfrak{g} -modules.)

Representations of complex semisimple Lie algebras:

We let $\mathfrak{g} = \mathfrak{g}(\Gamma, A)$ be a semisimple Lie algebra obtained by a generators-and-relations construction whose starting point is a GCM graph (Γ, A) whose connected components are connected Dynkin diagrams. Fix a numbering $1, 2, \ldots, n$ of the nodes of Γ . Let V be a \mathfrak{g} -module of finite dimension $d \geq 1$. Then:

1. Weight basis There exists a basis for V consisting of common eigenvectors with integer eigenvalues for all $\phi(h_i)$'s. That is, there is a basis $\{v_1, \ldots, v_d\}$ and integers $m_{i,j}$ such that $h_i \cdot v_j = m_{i,j} v_j$ for all $1 \le i \le n, 1 \le j \le d$.

<u>IDEA</u>: Use basic $\mathfrak{sl}(2,\mathbb{C})$ theory to obtain a basis of eigenvectors with integral eigenvalues for each $\phi(h_i)$. Now the fact that the $\phi(h_i)$'s commute implies that a basis of common eigenvectors exists.

<u>DEFINITIONS</u>: Such a basis for V is called a <u>weight basis</u>. A <u>weight vector</u> is any vector in V that is an eigenvector for all $\phi(h_i)$'s. The <u>weight</u> of a weight vector v is the n-tuple (m_1, \ldots, m_n) of integral eigenvalues for which $\phi(h_i)(v) = m_i v$.

2. Maximal vector There is a weight vector v such that $x_i \cdot v = 0$ for all x_i 's. The weight of v is an *n*-tuple of *nonnegative* integers.

<u>IDEA</u>: This follows from Lie's theorem applied to $\phi(\mathfrak{s})$, where \mathfrak{s} is the solvable Lie subalgebra of \mathfrak{g} generated by all of the x_i 's and h_i 's. That the eigenvalues are nonnegative follows from $\mathfrak{sl}(2,\mathbb{C})$ theory.

<u>DEFINITION:</u> Any such vector is called a <u>maximal vector</u>.

3. Unique maximal vector \leftrightarrow irreducible module V is irreducible if and only if there exists a unique maximal vector v (unique up to scalar factors).

<u>IDEA:</u> Each maximal vector "generates" a subspace of V that is stable under the action of \mathfrak{g} .

<u>DEFINITION</u>: If $\lambda = (\lambda_i)_{1 \le i \le n}$ is the weight of the maximal vector v, then we say the irreducible \mathfrak{g} -module V has highest weight λ .

4. Uniqueness Suppose V and W are irreducible \mathfrak{g} -modules with maximal vectors having the same highest weight. Then $V \approx W$.

<u>IDEA</u>: Both modules are "cyclic" in the sense that they are generated by their maximal vectors. Since these maximal vectors are identical in the way \mathfrak{g} acts on them, then the modules they generate should be the same.

5. Existence Suppose $\lambda = (\lambda_i)_{1 \le i \le n}$ is any *n*-tuple of nonnegative integers. Then there exists a finitedimensional irreducible g-module V with highest weight λ .

<u>IDEA</u>: Such a g-module can be obtained by generators and relations: For a suitable ideal $I(\lambda)$ in $U(\mathfrak{g})$, we have $V \approx U(\mathfrak{g})/I(\lambda)$.

<u>DEFINITION</u>: A dominant weight is an *n*-tuple $\lambda = (\lambda_i)_{1 \le i \le n}$ of nonnegative integers.

Together #4 and #5 give a one-to-one correspondence between irreducible modules and dominant weights.