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One of my goals for this series of talks has been to introduce you to the algebraic notion of a Lie algebra
and (perhaps) to convince you that these are familiar and naturally occurring objects, whatever their other
uses might be.

Another goal has been to share with you what Lie algebras might be “useful” for. Some uses, such as Lie
algebra actions in the study of knot invariants, I know almost nothing about and will only mention in passing
(this counts as the “mention in passing”). Other uses — such as the role played in the classification of finite
simple groups by those finite simple groups arising as subgroups of the automorphism group (“specialized”
to a finite field) of a simple Lie algebra — are not really in the vein of our discussion.

I hoped to demonstrate that there are natural combinatorial manifestations of Lie algebras realized as spaces
of operators “acting on” some very beautiful (in the eyes of some beholders) finite partially ordered sets. In
these notes I hope you will see that Lie algebras are useful for studying representations of Lie groups (which
might be the most fundamental mathematical objects in the universe).

• Formal definitions A Lie group G is a smooth (i.e. C∞) n-manifold which is also endowed with a
group structure for which the multiplication mapping G × G → G (given by (x, y) 7→ xy) and the
inverse mapping G→ G (given by x 7→ x−1) are smooth.

A topological n-manifold is a 2nd countable Hausdorff topological space X that is locally Euclidean of
dimension n, i.e. for any x in X there is an open neighborhood U and a mapping φ such that φ is a
homeomorphism from U onto an open subset of Rn.

A differentiable (or smooth) structure on a topological n-manifold X is a collection A = {(Uα, φα) |α ∈
A} for some index set A and for which (1)

⋃
α Uα = X, (2) each Uα is a connected open subset of X,

(3) each φα is a homeomorphism from Uα onto some open subset of Rn, (4) whenever Uα ∩ Uβ 6= ∅
then φα ◦ φ−1

β : φβ(Uα ∩Uβ)→ φα(Uα ∩Uβ) is smooth, and (5) A is maximal in the sense that if U is
any connected open subset of X with homeomorphism φ from U onto an open subset of Rn and such
that φ ◦ φ−1

α and φ−1
α ◦ φ are smooth mappings whenever U ∩Uα 6= ∅, then (U, φ) ∈ A. The (Uα, φα)′s

are called coordinate systems or coordinate charts for X. The pair (X,A) (and by abuse of notation
just X) is called a smooth n-manifold.

A complex Lie group is defined analogously, replacing “smooth manifold” with “complex manifold,”
smooth mappings with analytic mappings, etc.

• Preliminary examples

1. Euclidean spaces:

Consider Rn as an inner product space in the usual way, with topology generated by the open
balls relative to the usual metric. Then Rn under vector addition is a Lie group.

(Similarly, the complex inner product space Cn is a complex Lie group with the usual vector
addition as the group operation.)

2. General linear groups:

Now identify Matn×n(R) with Rn2
. The mapping det : Matn×n(R) → R is smooth since it is

n-linear. Then the set of invertible n × n matrices GL(n,R) is det−1(R \ {0}), hence is open.
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In this way GL(n,R) is a smooth n-manifold. Since each of the n2 entries of a product matrix
AB are polynomials in the entries of A and B, then multiplication is a smooth mapping. Since
det is smooth, we could use Cramer’s Rule to see that the inverse mapping is also smooth.
Thus GL(n,R) is a real n2-dimensional Lie group. Similarly, we can see that GL(n,C) is an
n2-dimensional complex Lie group.

The general linear Lie groups are GL(n,R) and GL(n,C).

3. General principle: An abstract subgroup of a real Lie group G that is closed as a subset of G is
a real Lie group relative to the subspace topology. This is not true in general if we replace the
adjective “real” with “complex,” as the next example shows.

Thus in particular, since the normal subgroup SL(n,R) = det−1({1}) = ker(det) is closed as a
subset of GL(n,R), it is a Lie group relative to the subspace topology.

4. The circle group S1:

Let S1 := {e2πix |x ∈ R}, the set of complex numbers of modulus 1. Then S1 is a subgroup of
the multiplicative group C∗ = GL(1,C). It is also closed as a subspace of GL(1,C). Regarding
GL(1,C) to be a real Lie group, we see that S1 is a real Lie group relative to the subspace topology
of C∗. Notice that S1 is not a complex Lie group, however.

5. General principle: For any Lie group G, the connected component G0 containing the identity is
itself a Lie group. In fact, G0 is normal as a subgroup of G.

The general linear Lie group GL(n,R) is not connected since its image in R∗ under the continuous
mapping det : GL(n,R)→ R∗ is not connected. The connected component containing the identity
matrix I is denoted GL(n,R)+ and consists of all real n× n matrices with positive determinant.

• Automorphism group of a bilinear form

Given an invertible matrix M in GL(n,F), define

GM := {A ∈ GL(n,F)
∣∣ATMA = M}

SGM := {A ∈ SL(n,F)
∣∣ATMA = M} = GM ∩ SL(n,F)

One can see that GM and SGM are abstract subgroups of GL(n,F) of SL(n,F) respectively. Use
a sequence argument to see that each is closed as a subset of GL(n,F). Since det(M) 6= 0 and
det(AT ) = det(A), one can see that det(A) = ±1 for any A ∈ GM .

Special cases:

1. M = I. Then GM is the orthogonal group O(n,F), and SGM is the special orthogonal group

SO(n,F). The special orthogonal group is connected, and thus the orthogonal group has exactly
two connected components. When F = R, one can see that O(n,R) and SO(n,R) are bounded,
hence compact. When F = C, one can see that neither O(n,R) nor SO(n,R) is bounded.

2. M = Mp,q =

(
Ip O

O −Iq

)
with F = R. Then GM is the pseudo-orthogonal group O(p, q,R),

and SGM is the special pseudo-orthogonal group SO(p, q,R). These are not compact if p ≥ 1 and
q ≥ 1 since in this case it can be seen that SO(p, q,R) is not bounded; in this case it also turns
out that SO(p, q,R) has exactly two connected components.

3. M =

(
O In

−In O

)
. Then GM and SGM coincide (this fact is not obvious) and are the symplectic

group Sp(2n,F). This Lie group is not compact since it can be seen that Sp(2n,F) is not bounded.
The symplectic group is connected.
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When F = C, we can similarly define the group of automorphisms of a nondegenerate Hermitian form:

G∗M := {A ∈ GL(n,F)
∣∣A∗MA = M}

SG∗M := {A ∈ SL(n,F)
∣∣A∗MA = M} = GM ∩ SL(n,F)

It is easy to see that G∗M and SG∗M are abstract subgroups of GL(n,C) of SL(n,C) respectively. Use
a sequence argument to see that each is closed as a subset of GL(n,C). Since det(M) 6= 0, one can see
that |det(A)| = 1 for any A ∈ G∗M . However, these turn out to be real, NOT complex, Lie groups.

1. M = I. Then G∗M is the unitary group Un = U(n,C), and SG∗M is the special unitary group

SUn = SU(n,C). These are compact, connected Lie groups.

2. M = Mp,q. Then G∗M is the pseudo-unitary group Up,q = U(p, q,C), and SG∗M is the special

pseudo-unitary group SUp,q = SU(p, q,C). For p ≥ 1 and q ≥ 1, I don’t think these are compact
or connected.

Real vs. Complex: Notice that U(1,C) ≈ S1, which is evidently a real but not a complex manifold. This
suggests that U(n,C) and SU(n,C) might not be complex manifolds in general. There are several other
clues. First, the associated Lie algebras u(n,C) and su(n,C) discussed previously and again below are
real, not complex, Lie subalgebras of gl(n,C). Second, conjugation z 7→ z is well-known to be a real
C∞ but not a complex analytic transformation of the complex plane, and so the defining equations for
U(n,C) and SU(n,C) are not complex analytic. Third, and decisively, a result about Lie groups says
that a compact, connected, complex Lie group must be abelian.

• The matrix exponential

Take F = R or C. With A ∈ gl(n,F), define the matrix exponential function by the rule

eA = I +A+
1
2!
A2 +

1
3!
A3 +

1
4!
A4 + · · ·

The following properties of the matrix exponential are fairly routine to justify (but #5 might be a
little trickier). Here A and B are any n× n matrices in gl(n,F):

1. For any P ∈ GL(n,F), eP−1AP = P−1eAP .

2. det(eA) = etrace(A)

3. eA ∈ GL(n,F). If F = R, then eA ∈ GL(n,R)+.

4. e(A
T ) = (eA)T

5. If AB = BA, then eA+B = eAeB .

We will use the matrix exponential below to derive correspondences between Lie groups and Lie alge-
bras.

• Tangent space at the identity is a Lie algebra!

Now consider the tangent space TI(G) at the identity for one of the matrix groups we have seen so far.
We’ll think of these as real Lie groups right now. We identify a tangent vector as the derivative f ′(0)
for a smooth curve f : (−ε, ε)→ G for which f(0) = I.

G = GL(n,F)←→ g = gl(n,F) Since G = GL(n,F) is open as a subset of gl(n,F), then we can make
the identification of vector spaces TI(G) = gl(n,F).
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G = SL(n,F)←→ g = sl(n,F) Now consider G = SL(n,F). We will think of the determinant as

an alternating n-linear form on
∧n(Fn). The kth exterior power

∧k(Fn) is an
(
n
k

)
-dimensional vector

space over F with basis {ei1 ∧ · · · ∧ eik

∣∣ 1 ≤ i1 < · · · < ik ≤ n} where the wedge product is subject to
the condition that

v1 ∧ · · · ∧ vi ∧ vi+1 ∧ · · · ∧ vk = −v1 ∧ · · · ∧ vi+1 ∧ vi ∧ · · · ∧ vk

for any v1, . . . , vk in Fn. Then
∧n(Fn) is an one-dimensional vector space over F with basis {e1∧· · ·∧en}.

If A ∈ gl(n,F), then det(A) is the unique scalar such that A(1) ∧ · · · ∧A(n) = det(A)e1 ∧ · · · ∧ en, where
A(i) is the ith column of the matrix A.

So let f : (−ε, ε) → SL(n,F) be a smooth curve with f(0) = I and f ′(0) = X. Then we have
f(t)(1) ∧ · · · ∧ f(t)(n) = e1 ∧ · · · ∧ en for all t. Differentiating, we obtain by the “product rule”

n∑
i=1

f(t)(1) ∧ · · · ∧ f ′(t)(i) ∧ · · · ∧ f(t)(n) = 0,

which at t = 0 becomes
n∑

i=1

X(1) ∧ · · · ∧ ei ∧ · · · ∧X(n) = 0,

which simplifies to
n∑

i=1

Xii = 0,

and hence trace(X) = 0. Thus if X ∈ TI(SL(n,F)), then trace(X) = 0.

Conversely suppose X ∈ TI(SL(n,F)). Then consider the smooth function f : R→ SL(n,F) given by
f(t) = etX . Clearly f(0) = I and f ′(0) = X. Then X ∈ sl(n,F).

G = SGM ←→ g = gM Here M is invertible. Consider a smooth curve f : (−ε, ε) → SGM for
which f(0) = I and f ′(0) = X. Taking the derivative of both sides of f(t)TMf(t) = M we get
f ′(t)TMf(t) + f(t)TMf ′(t) = O, and at t = 0 this becomes XTM +MX = O, and hence X ∈ gM .

Conversely, if X ∈ gM , then define f : R → SGM by f(t) = etX . Now M invertible implies gM ⊂
sl(n,F), and hence det(eA) = 1 for any A ∈ gM . So indeed f(t) ∈ SGM for all time t. Then f ′(0) = X,
and hence X ∈ TI(SGM ). Thus,

G = SO(n,F) ←→ g = so(n,F)

G = Sp(n,F) ←→ g = sp(n,F)

G = SO(p, q,R) ←→ g = so(p, q,R)

Unitary and pseudo-unitary groups As in the previous cases one can check that the unitary and
pseudo-unitary groups Un = U(n,C), SUn = SU(n,C), Up,q = U(p, q,C), and SUp,q = SU(p, q,C)
have real Lie algebras un = u(n,C), sun = su(n,C), up,q = u(p, q,C), and sup,q = su(p, q,C) respec-
tively.

• More examples

1. The pseudo-orthogonal groups O(1, 1,R) and SO(1, 1,R).
First, SO(1, 1,R) has precisely two connected components. Set

SO(1, 1, R)+ :=

( 
cosh t sinh t

sinh t cosh t

! ˛̨̨̨
t ∈ R

)
, SO(1, 1, R)− :=

( 
− cosh t sinh t

sinh t − cosh t

! ˛̨̨̨
t ∈ R

)
.
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It is not too hard to check that

SO(1, 1,R) = SO(1, 1,R)+ ∪ SO(1, 1,R)−

(Check that the minimum distance between elements of the two sets is positive.) The only other
coset of SO(1, 1,R) in O(1, 1,R) is(

1 0
0 −1

)
SO(1, 1,R) =

{(
cosh t − sinh t
sinh t − cosh t

)}⋃{(
− cosh t − sinh t
sinh t cosh t

)}
Since SO(1, 1,R) is an index two subgroup of O(1, 1,R), it is therefore a normal subgroup. Also,
clearly SO(1, 1,R) is not bounded, and hence not compact. (Thanks to Tan Zhang for suggesting
this example.)

2. Irrational line on the torus.

We think of the torus as T = S1 × S1, a Lie group relative to the product topology. Consider
the subgroup H = {(e2πit, e2πiαt)

∣∣ t ∈ R}, where α is some given irrational number. Then H is
dense in T, and is therefore not a topologically closed subset of T. Moreover, H is not a Lie group
relative to the subspace topology. However, H is an immersed Lie subgroup of T, as an immersion
of the Lie group (R,+) in T via the mapping f : (R,+)→ T with f(t) = (e2πit, e2πiαt).

3. The Heisenberg group.

Consider the group G of unipotent 3× 3 matrices. We have

G :=


 1 a b

0 1 c

0 0 1

 ∣∣∣ a, b, c ∈ R


This is topologically closed as a subgroup of GL(3,R). Hence G is a Lie group relative to the
subspace topology; it is the three-dimesnional Heisenberg group (there are higher dimension
analogs). The center of G is

Z(G) :=


 1 0 b

0 1 0
0 0 1

 ∣∣∣ b ∈ R


Identify Z as the subgroup of Z(G) given by taking b ∈ Z. Then Z is a discrete subgroup of the
center. As it turns out, the quotient G/Z does not have a faithful finite-dimensional representation
as a subgroup of some general linear group GL(n,R) or GL(n,C).

• A general picture for the study of Lie group/Lie algebra representations

A (complex) representation of a (real or complex) Lie group G is a Lie group homomorphism φ :
G → GL(n,C). A (complex) representation of a (real or complex) Lie algebra g is a Lie algebra
homomorphism φ : g→ gl(n,C).

The general theory (some key results are outlined on the following pages) gives us the following picture
that helps connect the study of representations of Lie groups and representations of complex Lie
algebras:

G G̃
π� exp, log

exp, logGL(n,C)

@
@

@
@@R ?

φ
ψ

-�

-�

g

?

dψ

gl(n,C)

- gC
j

�
�

�
��	

(dψ)C = ρ
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Here G is a connected Lie group, φ : G → GL(n,C) is a representation of G, and G̃ is the simply
connected form for G. So G̃ is simply connected, and G and G̃ share the same Lie algebra g.

• Determinants and the one-dimensional real representations of the general linear group GL(n,R)+

Our goal is to describe the one-dimensional real representations φ : GL(n,R)+ → GL(1,R). It is
sufficient to assume that the mapping φ is continuous since this implies, by a general principle about
Lie groups, that the mapping is in fact smooth. In this case, observe that the image of φ must
be a connected subset of GL(1,R), and hence must reside in GL(1,R)+. For convenience we’ll let
R+ ≈ GL(1,R)+ denote the multiplicative group of positive real numbers. So, our aim is to find all
continuous homomorphisms φ : GL(n,R)+ → R+.

We start with what is probably a familiar fact: Suppose φ : R+ → R+ is a continuous homomorphism.
Then there exists a real number a such that φ(x) = xa. To see this, use a standard “bootstrapping”
argument. Notice that this nicely illustrates the general principle that a continuous homomorphism of
Lie groups is necessarily smooth. Thus we’ve resolved our question in the case that n = 1.

Next we consider the continuous homomorphisms φ : SL(n,R)→ R+. Since SL(n,R) is connected and
the continuous mapping φ is necessarily smooth, then by general principles this mapping is uniquely
determined by its differential dφ : sl(n,R)→ R, which is a mapping of Lie algebras where the target set
here is the one-dimensional real Lie algebra. In a previous talk we asserted that any one-dimensional Lie
algebra is abelian. We also learned that the Lie algebra sl(n,R) is simple, so that [sl(n,R), sl(n,R)] =
sl(n,R). In particular, it must be the case that dφ is trivial. But now this implies that φ is trivial. We
conclude that φ(X) = 1 for all X in SL(n,R).

Now we consider continuous homomorphisms φ : GL(n,R)+ → R+. Since SL(n,R) ⊆ ker(φ), then
there is an induced continuous homomorphism ψ : R+ → R+ that makes the following diagram
commute:

GL(n,R)+ R+-det

R+

@
@

@
@@R ?

φ
ψ

But we already know that ψ must take the form of a power function ψ(x) = xa for some real exponent
a. Thus, φ(X) = (det(X))a. We summarize this as follows:

If φ : GL(n,R)+ → R+ is a continuous homomorphism,

then there is a real number a such that

φ(X) = (det(X))a
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Some data for real Lie groups

Real Lie group

G0, connected

component of

identity

π1(G0), the

fundamental

group

Closed subgroup

of appropriate

GL(n, F)?

Compact?

GL(1, R)
Lie grp
≈ R∗ (R+, ·) π1(R+) ≈ {0}

Open subset of

gl(1, R)
diffeo
≈ R

No

GL(2, R) GL(2, R)+ π1(GL(2, R)+) ≈ Z
Open subset of

gl(2, R)
diffeo
≈ R4 No

GL(n, R), n ≥ 3 GL(n, R)+ π1(GL(n, R)+) ≈ Z2

Open subset of

gl(n, R)
diffeo
≈ Rn2 No

SL(1, R)
Lie grp
≈ {1} SL(1, R) {0} Yes No

SL(2, R) SL(2, R) Z Yes No

SL(n, R), n ≥ 3 SL(n, R) Z2 Yes No

SO(1, R)
Lie grp
≈ {1} {1} {0} Yes Yes

SO(2, R)
Lie grp
≈ S1 SO(2, R) Z Yes Yes

SO(n, R), n ≥ 3 SO(n, R) Z2 Yes Yes

Spin(n, R), n ≥ 3 Spin(n, R) {0} Yes Yes

O(1, R)
Lie grp
≈ {±1} {1} π1({1}) ≈ {0} Yes Yes

O(2, R)
Lie grp
≈ SO(2, R)×φR {I, R} SO(2, R) π1(SO(2, R)) ≈ Z Yes Yes

O(n, R)
Lie grp
≈ SO(n, R)×φR{I, R}

n ≥ 3
SO(n, R) π1(SO(n, R)) ≈ Z2 Yes Yes

Sp(2n, R) Sp(2n, R) Z Yes No

SO(p, q, R)
Lie grp
≈ SO(q, p, R)

p, q ≥ 1
SO(p, q, R)+ ??? Yes No

SU(n, C) SU(n, C) {0} Yes Yes

U(n, C)
diffeo
≈ SU(n, C)× S1 U(n, C) Z Yes Yes

NOTES:

• In the above table, the matrix R is any matrix from the appropriate orthogonal group such that R2 = I and

det(R) = −1.

• I don’t believe that the simply connected forms for SL(n, R) and GL(n, R)+ have faithful finite-dimensional

representations. However, Spin(n, R) does.
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Some data for complex Lie groups

Complex Lie group

G0, connected

component of

identity

π1(G0), the

fundamental

group

Closed subgroup

of appropriate

GL(n, F)?

Compact?

GL(n, C) GL(n, C) Z
Open subset of

gl(n, C)
diffeo
≈ Cn2 No

SL(n, C) SL(n, C) {0} Yes No

SO(1, C)
Lie grp
≈ {1} {1} {0} Yes Yes

SO(2, C)
Lie grp
≈ C∗ SO(2, C) Z Yes No

SO(n, C), n ≥ 3 SO(n, C) Z2 Yes No

Spin(n, C), n ≥ 3 Spin(n, C) {0} Yes No

O(1, C)
Lie grp
≈ {±1} {1} π1({1}) ≈ {0} Yes Yes

O(2, C)
Lie grp
≈ SO(2, C)×φR {I, R} SO(2, C) π1(SO(2, C)) ≈ Z Yes No

O(n, C)
Lie grp
≈ SO(n, C)×φR{I, R}

n ≥ 3
SO(n, C) π1(SO(n, C)) ≈ Z2 Yes No

Sp(2n, C) Sp(2n, C) {0} Yes No

NOTES:

• In the above table, the matrix R is any matrix from the appropriate orthogonal group such that R2 = I and

det(R) = −1.
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