Lie algebras: definitions and examples

Rob Donnelly March 10, 2006

- Definition A Lie algebra $(\mathfrak{g},[]$,$) is a vector space \mathfrak{g}$ together with an operation $[]:, \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ that is:

1. Bilinear: $[x+\lambda y, z]=[x, z]+\lambda[y, z]$ and $[x, y+\lambda z]=[x, y]+\lambda[x, z]$
for all $x, y, z \in \mathfrak{g}$ and for all scalars λ
2. Anticommutative: $[x, y]=-[y, x]$ for all $x, y \in \mathfrak{g}$
3. "Jacobi associative": $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$ for all $x, y, z \in \mathfrak{g}$

- For us the ground field \mathbb{F} will be \mathbb{R} or \mathbb{C}. The operation [,] is called the Lie bracket. A Lie subalgebra of a Lie algebra is a subspace that is closed under the Lie bracket. An ideal is a Lie subalgebra that is "i-o closed." So a Lie subalgebra \mathfrak{i} is an ideal if $[a, x] \in \mathfrak{i}$ for all $a \in \mathfrak{g}$ and $x \in \mathfrak{i}$. Notice that any ideal is automatically "two-sided" since $[a, x] \in \mathfrak{i}$ iff $[x, a] \in \mathfrak{i}$.
- Substructures, Homomorphisms, kernels, quotients, etc.

Algebraic structure	Group G	Ring R	Vector space W	Lie algebra \mathfrak{g}
Substructure	Subgroup H	Subring S	Subspace W	Lie subalgebra \mathfrak{h}
Homomorphism	$\phi(x y)=\phi(x) \phi(y)$	$\begin{aligned} \phi(x+y) & =\phi(x)+\phi(y) \\ \phi(x y) & =\phi(x) \phi(y) \end{aligned}$	$\begin{gathered} \phi(x+y)=\phi(x)+\phi(y) \\ \phi(\lambda x)=\lambda \phi(x) \end{gathered}$	$\begin{gathered} \phi(x+y)=\phi(x)+\phi(y) \\ \phi(\lambda x)=\lambda \phi(x) \\ \phi([x, y])= \\ {[\phi(x), \phi(y)]} \end{gathered}$
Kernel	$\begin{gathered} \text { Normal } \\ \text { subgroup } N \end{gathered}$	(Two-sided) ideal I	Subspace W	Ideal i
Quotient	G / N	R / I	V / W	$\mathfrak{g} / \mathfrak{i}$
Operations in quotient	$(x N)(y N)=(x y) N$	$\begin{gathered} (x+I)+(y+I)= \\ (x+y)+I \\ (x+I)(y+I)=x y+I \end{gathered}$	$\begin{gathered} (x+W)+(y+W)= \\ (x+y)+W \\ \lambda(x+W)=(\lambda x)+W \end{gathered}$	$\begin{gathered} (x+\mathfrak{i})+(y+\mathfrak{i})= \\ (x+y)+\mathfrak{i} \\ \lambda(x+\mathfrak{i})=(\lambda x)+\mathfrak{i} \\ {[(x+\mathfrak{i}),(y+\mathfrak{i})]=} \\ {[x, y]+\mathfrak{i}} \end{gathered}$

- Examples

1. Take any vector space \mathfrak{g} over \mathbb{F} and declare $[x, y]:=0$ for all $x, y \in \mathfrak{g}$. Then $(\mathfrak{g},[]$,$) is called an abelian$ Lie algebra. Notice that any one-dimensional Lie algebra is abelian.
2. $\left(\mathbb{R}^{3}, \times\right)$ is a real Lie algebra. See Stewart's Calculus: Early Transcendentals, 5 th edition, $\S 12.4$, Theorem 8 and \#43 (the latter is the Jacobi identity!).
3. The general linear Lie algebra: $\mathfrak{g l}(n, \mathbb{F}):=\{n \times n$ matrices with entries from $\mathbb{F}\}$ with Lie bracket $[A, B]:=A B-B A$.

Alternatively, take an n-dimensional vector space V over \mathbb{F}, and set $\mathfrak{g l}(V):=\{$ endomorphisms $T: V \rightarrow$ $V\}$ with Lie bracket $[S, T]:=S T-T S$.
4. The special linear Lie algebra: $\mathfrak{s l}(n, \mathbb{F}):=\{$ traceless $n \times n$ matrices with entries from $\mathbb{F}\}$.

Alternatively, take an n-dimensional vector space V over \mathbb{F}, and set $\mathfrak{s l}(V):=\{$ endomorphisms $T: V \rightarrow$ V with zero trace $\}$.

Check that $\mathfrak{s l}(n, \mathbb{F})$ is an $\left(n^{2}-1\right)$-dimensional subspace of $\mathfrak{g l}(n, \mathbb{F})$, but it is not closed under matrix multiplication. However, $\mathfrak{s l}(n, \mathbb{F})$ is closed under the Lie bracket $[A, B]=A B-B A$ since trace $(A B)=$ $\operatorname{trace}(B A)$ and hence is a Lie subalgebra of $\mathfrak{g l}(n, \mathbb{F})$.

The mapping trace $: \mathfrak{g l}(n, \mathbb{F}) \rightarrow \mathbb{F}$ is a surjective Lie algebra homomorphism. Moreover, $\mathfrak{s l}(n, \mathbb{F})=$ $\operatorname{ker}($ trace $)$, and hence is an ideal in $\mathfrak{g l}(n, \mathbb{F})$. Finally, by the usual homomorphism theorems, it follows that the abelian Lie algebra \mathbb{F} is isomorphic to the quotient $\mathfrak{g l}(n, \mathbb{F}) / \mathfrak{s l}(n, \mathbb{F})$. (Thus it is easy to see that $\operatorname{dim}(\mathfrak{s l}(n, \mathbb{F}))=n^{2}-1$.)
5. Special cases: $n=2$ and $n=3$.
$n=2$ The following matrices are a basis for the three-dimensional $\mathfrak{s l}(2, \mathbb{F})$:

$$
x:=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad y:=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad h:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

In fact, $\mathfrak{s l}(2, \mathbb{F})=\langle x, y, h \mid[x, y]=h,[h, x]=2 x,[h, y]=-2 y\rangle$ (generators and relations).
$n=3$ The following matrices are a basis for the eight-dimensional $\mathfrak{s l}(3, \mathbb{F})$:

$$
\begin{gathered}
x_{1}:=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad y_{1}:=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad h_{1}:=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
x_{2}:=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad y_{2}:=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad h_{2}:=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \\
{\left[x_{1}, x_{2}\right]=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad\left[y_{2}, y_{1}\right]:=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)}
\end{gathered}
$$

In fact, $\mathfrak{s l}(3, \mathbb{F}) \approx\left\langle x_{1}, y_{1}, h_{1}, x_{2}, y_{2}, h_{2}\right|$ "Serre" relations \rangle, where the Serre relations in this case are:

$$
\text { " } \mathfrak{s l}(2, \mathbb{F}) \text { " relations: }\left[x_{1}, y_{1}\right]=h_{1},\left[h_{1}, x_{1}\right]=2 x_{1},\left[h_{1}, y_{1}\right]=-2 y_{1}
$$

$$
\left[x_{2}, y_{2}\right]=h_{2},\left[h_{2}, x_{2}\right]=2 x_{2},\left[h_{2}, y_{2}\right]=-2 y_{2}
$$

"Commuting" relations: $\left[h_{1}, h_{2}\right]=0,\left[x_{1}, y_{2}\right]=0,\left[x_{2}, y_{1}\right]=0$.
"Intertwining" relations: $\left[h_{1}, x_{2}\right]=-x_{2},\left[h_{1}, y_{2}\right]=y_{2},\left[h_{2}, x_{1}\right]=-x_{1},\left[h_{2}, y_{1}\right]=y_{1}$
"Finiteness" relations: $\left[x_{1},\left[x_{1}, x_{2}\right]\right]=\left[x_{2},\left[x_{2}, x_{1}\right]\right]=\left[y_{1},\left[y_{1}, y_{2}\right]\right]=\left[y_{2},\left[y_{2}, y_{1}\right]\right]=0$.
6. Combinatorial representation/realization of $\mathfrak{s l}(2, \mathbb{F})$.
7. Lie subalgebras associated to bilinear forms:

Let $M \in \mathfrak{g l}(n, \mathbb{F})$. Think of M as a matrix representative of some bilinear form. Set

$$
\mathfrak{g}_{M}:=\left\{A \in \mathfrak{g l}(n, \mathbb{F}) \mid A^{T} M+M A=O\right\}
$$

Then \mathfrak{g}_{M} is a Lie subalgebra of $\mathfrak{g l}(n, \mathbb{F})$.

On conjugate versions of \mathfrak{g}_{M} If $P \in G L(n, \mathbb{F})$ and $M^{\prime}:=P^{T} M P$, then $\mathfrak{g}_{M^{\prime}} \approx \mathfrak{g}_{M}$. For the mapping $\phi: \mathfrak{g l}(n, \mathbb{F}) \rightarrow \mathfrak{g l}(n, \mathbb{F})$ given by $\phi(X)=P^{-1} X P$, check that $\left.\phi\right|_{\mathfrak{g}_{M}}: \mathfrak{g}_{M} \rightarrow \mathfrak{g}_{M^{\prime}}$ is an isomorphism of Lie algebras. So $\mathfrak{g}_{M^{\prime}}=P^{-1} \mathfrak{g}_{M} P$.
On symmetry/skew-symmetry In what follows we will focus on symmetric and skew-symmetric choices for M. This is actually a fairly reasonable assumption to make. We have the following direct sum of vector spaces: $\mathfrak{g l}(n, \mathbb{F})=S y m m \bigoplus S k e w$, where $S y m m$ is the subspace of symmetric matrices and Skew is the subspace of skew-symmetric matrices. Note that for any matrix $X, X=\frac{1}{2}\left(X+X^{T}\right)+$ $\frac{1}{2}\left(X-X^{T}\right)$. Let $X_{\text {symm }}:=\frac{1}{2}\left(X+X^{T}\right)$, and let $X_{\text {skew }}:=\frac{1}{2}\left(X-X^{T}\right)$. Then $\mathfrak{g}_{M}=\mathfrak{g}_{M_{\text {symm }}} \cap \mathfrak{g}_{M_{\text {skew }}}$.
On nondegeneracy If we think of M as a matrix representative of a nondegenerate bilinear form, then $M \in G L(n, \mathbb{F})=\{$ invertible $n \times n$ matrices with entries from $\mathbb{F}\}$. In this case \mathfrak{g}_{M} is a Lie subalgebra of $\mathfrak{s l}(n, \mathbb{F})$ since $A^{T} M+M A=O$ iff $M^{-1} A^{T} M+A=O$, hence $0=\operatorname{trace}\left(M^{-1} A^{T} M+A\right)=$ $\operatorname{trace}\left(M^{-1} A^{T} M\right)+\operatorname{trace}(A)=\operatorname{trace}\left(A^{T}\right)+\operatorname{trace}(A)=2 \operatorname{trace}(A)$. Now suppose a symmetric or skewsymmetric M is degenerate with rank $r<n$. Then there is a matrix congruent to M which has the block form $\left(\begin{array}{cc}\tilde{M} & O \\ O & O\end{array}\right)$ with $\tilde{M} \in G L(r, \mathbb{F})$ and \tilde{M} symmetric or skew-symmetric. If we write $A=\left(\begin{array}{cc}\tilde{A} & B \\ C & D\end{array}\right)$, we have $A^{T} M+M A=O$ iff $\tilde{A} \in \mathfrak{g}_{\tilde{M}}$ and $B=O$, in which case we can freely choose C and D. So in studying the Lie algebra \mathfrak{g}_{M} we'll end up studying the Lie subalgebra $\mathfrak{g}_{\tilde{M}}$ for the nondegenerate \tilde{M} anyway. I think that $\mathfrak{a}:=\left\{\left(\begin{array}{cc}O & O \\ C & O\end{array}\right)\right\}$ is an abelian ideal in \mathfrak{g}_{M} and that $\mathfrak{g}_{M} / \mathfrak{a} \approx \mathfrak{g}_{\tilde{M}} \oplus \mathfrak{g l}(n-r, \mathbb{F})$.
8. Special cases of Lie algebras associated to bilinear forms:
(a) Take $M=I$. Think of M as a matrix representing a symmetric positive definite bilinear form.

Then $\mathfrak{g}_{M}=" \mathfrak{s o}(n, \mathbb{F})$ " $=\{$ skew-symmetric $n \times n$ matrices $\}$. These are the orthogonal Lie algebras.
Special case: $n=5$. Notice that the only diagonal matrix that is skew-symmetric is the zero matrix. There is another matrix representation of $\mathfrak{s o}(5, \mathbb{C})$ that has some nontrivial diagonal matrices. Identifying such matrices will be of crucial importance when we discuss representations of complex simple Lie algebras. Now the matrix

$$
M^{\prime}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

is congruent to $M=I$ over \mathbb{C}. That is, for some $P \in G L(5, \mathbb{C})$ we have $M^{\prime}=P^{T} M P=P^{T} I P=$ $P^{T} P$. Then $\mathfrak{g}_{M^{\prime}} \approx \mathfrak{s o}(5, \mathbb{C})$. A basis for $\mathfrak{g}_{M^{\prime}}$ will therefore have $\frac{n^{2}-n}{2}=\frac{5^{2}-5}{2}=10$ basis vectors.

$$
x_{1}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad y_{1}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \quad h_{1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right)
$$

$$
x_{2}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad y_{2}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad h_{2}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Plus these four vectors:

$$
\left[x_{2}, x_{1}\right],\left[x_{2},\left[x_{2}, x_{1}\right]\right],\left[y_{2}, y_{1}\right], \text { and }\left[y_{2},\left[y_{2}, y_{1}\right]\right] .
$$

In fact, $\mathfrak{s o}(5, \mathbb{C}) \approx\left\langle x_{1}, y_{1}, h_{1}, x_{2}, y_{2}, h_{2}\right|$ "Serre" relations \rangle, where the Serre relations in this case are:

$$
\begin{aligned}
& \text { "sl(} 2, \mathbb{F}) \text { " relations: }\left[x_{1}, y_{1}\right]=h_{1},\left[h_{1}, x_{1}\right]=2 x_{1},\left[h_{1}, y_{1}\right]=-2 y_{1}, \\
& \qquad\left[x_{2}, y_{2}\right]=h_{2},\left[h_{2}, x_{2}\right]=2 x_{2},\left[h_{2}, y_{2}\right]=-2 y_{2} . \\
& \text { "Commuting" relations: }\left[h_{1}, h_{2}\right]=0,\left[x_{1}, y_{2}\right]=0,\left[x_{2}, y_{1}\right]=0 . \\
& \text { "Intertwining" relations: }\left[h_{1}, x_{2}\right]=-x_{2},\left[h_{1}, y_{2}\right]=y_{2},\left[h_{2}, x_{1}\right]=-2 x_{1},\left[h_{2}, y_{1}\right]=2 y_{1} \\
& \text { "Finiteness" relations: }\left[x_{1},\left[x_{1}, x_{2}\right]\right]=\left[x_{2},\left[x_{2},\left[x_{2}, x_{1}\right]\right]\right]=\left[y_{1},\left[y_{1}, y_{2}\right]\right]=\left[y_{2},\left[y_{2},\left[y_{2}, y_{1}\right]\right]\right]=0 .
\end{aligned}
$$

(b) Take $M=" M_{p, q} ":=\left(\begin{array}{cc}I_{p} & O \\ O & -I_{q}\end{array}\right)$. Think of M as a matrix representing a nondegenerate symmetric indefinite bilinear form.
Then $\mathfrak{g}_{M}=" \mathfrak{s o}(p, q, \mathbb{F})$." When $\mathbb{F}=\mathbb{C}, M$ is congruent to I, i.e. $M=P^{T} P$ for some matrix $P \in G L(p+q, \mathbb{C})$. In this case, $\mathfrak{s o}(p, q, \mathbb{C}) \approx \mathfrak{s o}(p+q, \mathbb{C})$. When $\mathbb{F}=\mathbb{R}$, the $\mathfrak{s o}(p, q, \mathbb{R})$'s are called pseudo-orthogonal Lie algebras.
(c) Take $M=\left(\begin{array}{cc}O & I_{n} \\ -I_{n} & O\end{array}\right)$. Think of M as a matrix representing a nondegenerate skew-symmetric bilinear form. Even dimensionality is a requirement for a skew-symmetric bilinear form to be nondegenerate.
Then $\mathfrak{g}_{M}=" \mathfrak{s p}(2 n, \mathbb{F}) . "$ These are the symplectic Lie algebras.
9. The unitary and special unitary Lie algebras:

Set $\mathfrak{u}_{n}:=\left\{A \in \mathfrak{g l}(n, \mathbb{C}) \mid A^{*}+A=O\right\}$. Here A^{*} means conjugate transpose. Thus \mathfrak{u}_{n} consists of the skew-Hermitian complex matrices. Set $\mathfrak{s u}_{n}:=\left\{A \in \mathfrak{s l}(n, \mathbb{C}) \mid A^{*}+A=O\right\}$.

These are real (NOT complex) Lie algebras: For $\lambda \in \mathbb{C}$ and $A \in \mathfrak{g l}(n, \mathbb{C})$, see that $(\lambda A)^{*}=\bar{\lambda} A^{*}$. If $\lambda A \in \mathfrak{u}_{n}$ or $\mathfrak{s u}_{n}$, then $(\lambda A)^{*}=-\lambda A$. We have $-\bar{\lambda} A=-\lambda A$ for nonzero A only if λ is real.
Special case: $n=2$. Check that $A \in \mathfrak{s u}_{2}$ if and only if $A=\left(\begin{array}{cc}a i & b+c i \\ -b+c i & -a i\end{array}\right)$ for some $a, b, c \in \mathbb{R}$. Thus $\operatorname{dim}_{\mathbb{R}}\left(\mathfrak{s u}_{2}\right)=3$. The mapping $\phi: \mathbb{R}^{3} \rightarrow \mathfrak{s u}_{2}$ given by

$$
\phi(x, y, z)=\left(\begin{array}{cc}
\frac{1}{2} x i & \frac{1}{2}(y+z i) \\
\frac{1}{2}(-y+z i) & \frac{1}{2}(-x i)
\end{array}\right)
$$

is an isomorphism of Lie algebras, so $\left(\mathbb{R}^{3}, \times\right) \approx \mathfrak{s u}_{2}$.
"Pseudo-unitary Lie algebras" have a relationship to the matrix $M_{p, q}=\left(\begin{array}{cc}I_{p} & O \\ O & -I_{q}\end{array}\right)$ similar to the pseudo-orthogonal Lie algebras: $\mathfrak{u}_{p, q}:=\left\{A \in \mathfrak{g l}(n, \mathbb{C}) \mid A^{*} M_{p, q}+M_{p, q} A=O\right\}$ and $\mathfrak{s u}_{p, q}:=\{A \in$ $\left.\mathfrak{s l}(n, \mathbb{C}) \mid A^{*} M_{p, q}+M_{p, q} A=O\right\}$

What about the skew-Hermitian case? Is there something like a symplectic unitary Lie algebra? It turns out that this offers nothing new. Suppose M is nondegenerate skew-Hermitian $\left(M^{*}=-M\right)$. Then M is normal (i.e. $M^{*} M=M M^{*}$), and by a linear algebra theorem there exists a unitary matrix P (i.e. $P^{-1}=P^{*}$) such that $P^{*} M P$ is diagonal. Then we can find a diagonal matrix $Q \in G L(n, \mathbb{C})$ so that $D=Q^{*} P^{*} M P Q$ is diagonal with diagonal entries of modulus 1 . Since D is also skew-Hermitian, then its diagonal entries are purely imaginary, so $D=i M_{p, q}$ for some nonnegative integers p and q $(p+q=n)$. Now observe that $\mathfrak{g}_{M} \approx \mathfrak{g}_{D} \approx \mathfrak{g}_{M_{p, q}}$.

- Complexification:

Let \mathfrak{g} be a real Lie algebra. Then there exists a unique pair $\left(\mathfrak{g}_{\mathbb{C}}, j\right)$ such that $\mathfrak{g}_{\mathbb{C}}$ is a complex Lie algebra, such that $j: \mathfrak{g} \rightarrow \mathfrak{g}_{\mathbb{C}}$ is a homomorphism of real Lie algebras (j will turn out to be injective), and such that we have the following "universal" property: Whenever \mathfrak{h} is a complex Lie algebra and $\phi: \mathfrak{g} \rightarrow \mathfrak{h}$ is a homomorphism of real Lie algebras, there is a unique homomorphism $\psi: \mathfrak{g}_{\mathbb{C}} \rightarrow \mathfrak{h}$ of complex Lie algebras which makes the following diagram commute:

That is, $\phi=\psi \circ j$. The complex Lie algebra $\mathfrak{g}_{\mathbb{C}}$ can be realized by extending scalars on \mathfrak{g} : If we think of \mathfrak{g} as a real vector space, then we can give the complex vector space $\mathfrak{g}_{\mathbb{C}}:=\mathfrak{g}_{\mathbb{R}} \mathbb{C}$ a Lie bracket operation that naturally extends the Lie bracket for \mathfrak{g}.

In practice, for a finite-dimensional real Lie algebra \mathfrak{g} with basis $\left\{v_{1}, \ldots, v_{d}\right\}$, then $\mathfrak{g}_{\mathbb{C}}$ is the complex vector space with basis $\left\{v_{1}, \ldots, v_{d}\right\}$. Then for $x, y \in \mathfrak{g}_{\mathbb{C}}$, we have

$$
[x, y]=\left[\sum a_{i} v_{i}, \sum b_{j} w_{j}\right]:=\sum a_{i} b_{j}\left[v_{i}, v_{j}\right]
$$

where each $\left[v_{i}, v_{j}\right]$ is calculated in \mathfrak{g} and expressed as a real linear combination in the basis $\left\{v_{k}\right\}$. It should be apparent now that $\mathbb{R}_{\mathbb{C}}=\mathbb{C}$, that $\mathfrak{s l}(2, \mathbb{R})_{\mathbb{C}}=\mathfrak{s l}(2, \mathbb{C})$, etc.

- What it means to be simple:

An algebraic structure \mathcal{A} is simple if its kernels are always trivial or all of \mathcal{A}. That is, \mathcal{A} is simple if for any nontrivial homomorphism $\phi: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$, it is the case that $\operatorname{ker}(\phi)$ is trivial. Recall that $\operatorname{ker}(\phi)$ is trivial iff ϕ is injective, so \mathcal{A} is simple iff all of its nontrivial homomorphic images are isomorphic to \mathcal{A}. One of the great (apparent) achievements of 20th century mathematics is the classification of finite simple groups. These are: the alternating groups on ≥ 5 letters, the cyclic groups of prime order, the finite simple groups of Lie type, and the 26 "sporadic" finite simple groups, which includes the MONSTER, a simple group of order

$$
808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 .
$$

One can easily confirm that a commutative ring with unity is simple iff it is a field. A finite field must have order p^{n} for some prime p, and any two fields with the same finite order are isomorphic. One can construct a finite field of any given prime power order. This amounts then to a classification of finite simple commutative rings with unity.

- Some examples and nonexamples of simple Lie algebras:
$\mathfrak{g l}(n, \mathbb{F})$ is not simple This is because $\mathfrak{s l}(n, \mathbb{F})$ is a proper nontrivial ideal. (See Example \#4 above.) $\mathfrak{s l}(2, \mathbb{F})$ is simple Together the following two observations show that any nontrivial ideal \mathfrak{i} in $\mathfrak{s l}(2, \mathbb{F})$ must be all of $\mathfrak{s l}(2, \mathbb{F})$:
Observation 1: If an ideal \mathfrak{i} in $\mathfrak{s l}(2, \mathbb{F})$ contains any one of the generators x, y, or h, then \mathfrak{i} contains all of the generators x, y, and h, and hence $\mathfrak{i}=\mathfrak{s l}(2, \mathbb{F})$. This is easy, since for example $x \in \mathfrak{i}$ implies that $[x, y]=h \in \mathfrak{i}$ and thus $-\frac{1}{2}[h, y]=y \in \mathfrak{i}$.

Observation 2: If $a x+b y+c h \neq 0$ is in \mathfrak{i}, then $[[a x+b y+c h, x], x]=-2 b x$ and $[[a x+b y+c h], y], y]=$ $-2 a y$ are in \mathfrak{i}. So if $a \neq 0$ or $b \neq 0$, then $\mathfrak{i}=\mathfrak{s l}(2, \mathbb{F})$ by Observation 1 .
$\mathfrak{s l}(3, \mathbb{F})$ is simple We'll outline an argument for this one, again using observations based on calculations with the generating elements.
Observation 1^{\prime} : If an ideal \mathfrak{i} in $\mathfrak{s l}(3, \mathbb{F})$ contains any one of x_{i}, y_{i}, or $h_{i}(i=1,2)$ then \mathfrak{i} contains all of them. To see this, note that for $j \in\{1,2\}$, it follows from Observation 1 that if one of x_{j}, y_{j}, h_{j} is in \mathfrak{i}, then $\left\{x_{j}, y_{j}, h_{j}\right\} \subset \mathfrak{i}$. If $h_{1} \in \mathfrak{i}$, then $\left[h_{1}, y_{2}\right]=y_{2} \in \mathfrak{i}$, and if $h_{2} \in \mathfrak{i}$, then $\left[h_{2}, y_{1}\right]=y_{1} \in \mathfrak{i}$. So the intertwining relations allow us to show that $\left\{x_{1}, y_{1}, h_{1}\right\} \subset \mathfrak{i}$ iff $\left\{x_{2}, y_{2}, h_{2}\right\} \subset \mathfrak{i}$.
Observation 2': Now suppose $a_{1} x_{1}+b_{1} y_{1} c_{1} h_{1}+a_{1} x_{1}+b_{1} y_{1} c_{1} h_{1}+p\left[x_{1}, x_{2}\right]+q\left[y_{2}, y_{1}\right] \neq 0$ is in \mathfrak{i}. To finish the argument use calculations similar to those of Observation 2 above to show that \mathfrak{i} must contain at least one of the generators x_{i}, y_{i}, or $h_{i}(i=1,2)$.

- Simple Lie algebras:

The following table exhibits some infinite families of finite-dimensional real simple Lie algebras. There are three other infinite families of finite-dimensional real simple Lie algebras which can be obtained by looking at analogs over the quaternions \mathbb{H} of $\mathfrak{s l}(n, \mathbb{R}), \mathfrak{s o}(p, q, \mathbb{R})$, and $\mathfrak{s p}(2 n, \mathbb{R})$. (This accounts for all of the infinite families.)

Real simple Lie algebra	Complexification
$\mathfrak{s l l}(n, \mathbb{R})$	$\mathfrak{s l}(n, \mathbb{C})$
$\mathfrak{s l}(n, \mathbb{C})$	$\mathfrak{s l}(n, \mathbb{C}) \times \mathfrak{s l}(n, \mathbb{C})$
$\mathfrak{s o}(n, \mathbb{R})$	$\mathfrak{s o}(n, \mathbb{C})$
$\mathfrak{s o}(p, q, \mathbb{R})$	$\mathfrak{s o}(p+q, \mathbb{C})$
$\mathfrak{s o}(n, \mathbb{C})$	$\mathfrak{s o}(n, \mathbb{C}) \times \mathfrak{s o}(n, \mathbb{C})$
$\mathfrak{s p}(2 n, \mathbb{R})$	$\mathfrak{s p}(2 n, \mathbb{C})$
$\mathfrak{s p}(2 n, \mathbb{C})$	$\mathfrak{s p}(2 n, \mathbb{C}) \times \mathfrak{s p}(2 n, \mathbb{C})$
$\mathfrak{s u}$	$\mathfrak{s l}(n, \mathbb{C})$
$\mathfrak{s u}_{p, q}$	$\mathfrak{s l}(p+q, \mathbb{C})$

The following tables present the complete irredundant list of finite-dimensional complex simple Lie algebras.

Complex simple Lie algebra	Dimension
$A_{n}=\mathfrak{s l}(n+1, \mathbb{C}), n \geq 1$	$n^{2}+2 n$
$B_{n}=\mathfrak{s o}(2 n+1, \mathbb{C}), n \geq 2$	$2 n^{2}+n$
$C_{n}=\mathfrak{s p}(2 n, \mathbb{C}), n \geq 3$	$2 n^{2}+n$
$D_{n}=\mathfrak{s o}(2 n, \mathbb{C}), n \geq 4$	$2 n^{2}-n$

Complex simple Lie algebra	Dimension
E_{6}	78
E_{7}	133
E_{8}	248
F_{4}	52
G_{2}	14

