Combinatorial models for Lie algebra representations: Pictures Rob Donnelly April 14, 2006

Pictured on the left is the supporting graph for the matrix representation of $\mathfrak{g}\left(A_{2}\right)$ given in Example 2 of the April 7, 2006 talk; on the right is the supporting graph for the matrix representation of \mathfrak{g} (" B_{2} ") given in Example 3. The integer pairs $\left(m_{1}(\mathbf{s}), m_{2}(\mathbf{s})\right)$ associated with the nodes in each graph are the weights (pairs of eigenvalues) for the corresponding basis vectors. (In this and other figures, edges are directed "up.")

Pictured below is a supporting graph for a representation of $\mathfrak{g}\left(A_{2}\right)$. As above, the integer pairs $\left(m_{1}(\mathbf{s}), m_{2}(\mathbf{s})\right)$ at the nodes of this graph are weights. The representation is irreducible with highest weight $\lambda=(a, b)=$ $(1,2)$.

The following supporting graph R for $\mathfrak{g}\left(A_{2}\right)$ is rank symmetric and rank unimodal.

$$
\begin{aligned}
& 6^{\text {th }} \mathrm{rank} ;\left|\rho^{-1}(6)\right|=1 \\
& 5^{\text {th }} \mathrm{rank} ;\left|\rho^{-1}(5)\right|=2 \\
& 4^{\text {th }} \mathrm{rank} ;\left|\rho^{-1}(4)\right|=3 \\
& 3^{\text {rd }} \mathrm{rank} ;\left|\rho^{-1}(3)\right|=3 \\
& 2^{\text {nd }} \mathrm{rank} ;\left|\rho^{-1}(2)\right|=3 \\
& 1^{\text {st }} \mathrm{rank} ;\left|\rho^{-1}(1)\right|=2 \\
& 0^{\text {th }} \mathrm{rank} ;\left|\rho^{-1}(0)\right|=1
\end{aligned}
$$

The dimension formula works out as follows:

$$
\operatorname{card}(R) \stackrel{\text { Theorem }}{=} \frac{(a+1)(b+1)(a+b+2)}{2}=\frac{(2)(3)(5)}{2}=15
$$

The rank generating function formula works out as follows:

$$
\begin{aligned}
& \operatorname{rgf}(R, q):=\sum_{\mathbf{s} \in R} q^{\mathrm{rank}(\mathbf{s})} \quad \stackrel{\text { Theorem }}{=} \frac{\left(1-q^{a+1}\right)\left(1-q^{b+1}\right)\left(1-q^{a+b+2}\right)}{(1-q)(1-q)\left(1-q^{2}\right)} \\
&=\frac{\left(1-q^{2}\right)\left(1-q^{3}\right)\left(1-q^{5}\right)}{(1-q)(1-q)\left(1-q^{2}\right)} \\
&=\left(1+q+q^{2}\right)\left(1+q+q^{2}+q^{3}+q^{4}\right) \\
&=1+2 q+3 q^{2}+3 q^{3}+3 q^{4}+2 q^{5}+q^{6}
\end{aligned}
$$

The character formula works out as follows:

$$
\begin{aligned}
& \operatorname{char}(R):=\sum_{\mathbf{s} \in R} x^{m_{1}(\mathbf{s})} y^{m_{2}(\mathbf{s})} \stackrel{\text { Theorem }}{=} \\
& =\frac{x^{a+1} y^{b+1}-x^{-(a+1)} y^{a+b+2}-x^{a+b+2} y^{-(b+1)}+x^{-(a+b+2)} y^{a+1}+x^{b+1} y^{-(a+b+2)}-x^{-(b+1)} y^{-(a+1)}}{x y\left(1-x^{-2} y\right)\left(1-x y^{-2}\right)\left(1-x^{-1} y^{-1}\right)} \\
& =\frac{x^{2} y^{3}-x^{-2} y^{5}-x^{5} y^{-3}+x^{-5} y^{2}+x^{3} y^{-5}-x^{-3} y^{-2}}{x y\left(1-x^{-2} y\right)\left(1-x y^{-2}\right)\left(1-x^{-1} y^{-1}\right)}(\text { try this on Maple }) \\
& =x y^{2}+x^{-1} y^{3}+x^{2}+2 y+x^{3} y^{-2}+x^{-2} y^{2}+2 x y^{-1}+x^{-3} y^{2}+2 x^{-1}+y^{-2}+x^{-3} y+x^{-2} y^{-1}
\end{aligned}
$$

Three bases for the adjoint representation of $\mathfrak{g}\left(A_{2}\right) \approx \mathfrak{s l}(3, \mathbb{C})$.
For the adjoint representation, the Lie algebra acts on itself. The Lie algebra homomorphism ad $: \mathfrak{g}\left(A_{2}\right) \rightarrow \mathfrak{g l}\left(\mathfrak{g}\left(A_{2}\right)\right)$ is given by $\operatorname{ad}(z)(w)=[z, w]$.

The only three supporting for the adjoint representation of $\mathfrak{g}\left(A_{2}\right) \approx \mathfrak{s l}(3, \mathbb{C})$.

The "maximal" support

An "extremal" support

Pictured below is a supporting graph for a "fundamental" representation of the even orthogonal algebra $\mathfrak{s o}(8, \mathbb{C}) \approx \mathfrak{g}\left(D_{4}\right)$

Pictured below is a supporting graph for an irreducible representation of a semisimple Lie algebra $\mathfrak{g}(\Gamma, A)$. Can you identify the alegbra?

By the way, do you know a nice formula for the rank generating function for the Boolean lattices \mathfrak{B}_{n} ?

