Combinatorial models for Lie algebra representations Rob Donnelly April 14, 2006

Boolean lattices, revisited:

Let $\mathfrak{B}_{n}:=\{$ subsets of $\{1,2, \ldots, n\}\}$. We think of \mathfrak{B}_{n} as a partially ordered set with respect to subset containment " \subseteq," so we have $S \subseteq T$ for $S, T \in \mathfrak{B}_{n}$ iff S is a subset of T when we think of S and T as subsets of $\{1,2, \ldots, n\}$. For S and T in \mathfrak{B}_{n}, write $S \rightarrow T$ iff $S \subseteq T$ and $|T \backslash S|=1$. These edges are depicted in the order diagram for \mathfrak{B}_{3} below:

$$
\text { The "Boolean Lattice" } \mathfrak{B}_{3}
$$

All of the edges are taken to be pointing "up."
Let $V=V\left[\mathfrak{B}_{n}\right]=\operatorname{span}_{\mathbb{C}}\left\{v_{S} \mid S \in \mathfrak{B}_{n}\right\}$, a 2^{n}-dimensional complex vector space. The subalgebra of $\mathfrak{g l}(V)$ generated by the following linear transformations X, Y, and H on V is isomorphic to $\mathfrak{g}\left(A_{1}\right)$:

$$
\begin{aligned}
X\left(v_{S}\right) & := \\
Y\left(v_{S}\right): & \sum_{T \in \mathfrak{B}_{n}, S \rightarrow T} v_{T} \\
H\left(v_{S}\right): & \sum_{R \in \mathfrak{B}_{n}, R \rightarrow S} v_{R} \\
& =(2|S|-n) v_{S} \\
& \uparrow \quad \uparrow \\
& \quad \text { rank length }
\end{aligned}
$$

So in our example above, $X\left(v_{\{2\}}\right)=v_{\{1,2\}}+v_{\{2,3\}}, Y\left(v_{\{2\}}\right)=v_{\emptyset}$, and $H\left(v_{\{2\}}\right)=(2 \cdot 1-3) v_{\{2\}}=-v_{\{2\}}$.

Question:

Given any complex finite-dimensional representation of a complex finite-dimensional semisimple Lie algebra, is it possible to find a similar kind of combinatorial model?

Answer:

Yes. Here's how.
Let $\mathfrak{g}:=\mathfrak{g}(\Gamma, A)$ for a GCM graph (Γ, A) on n nodes so that \mathfrak{g} is finite-dimensional. In particular, \mathfrak{g} is semisimple. Given any representation $\phi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$, there exists a basis $\mathcal{B}=\left\{v_{\mathbf{s}}\right\}_{\mathbf{s} \in R}$ (for now R is just an index set of the appropriate size) of common eigenvectors for the $\phi\left(h_{i}\right)$'s:

$$
\phi\left(h_{i}\right)\left(v_{\mathbf{s}}\right)=m_{i}(\mathbf{s}) v_{\mathbf{s}}
$$

The eigenvalues $m_{i}(\mathbf{s})$ are all integers.
We will use elements of R as vertices. We declare that there is a colored directed edge $\mathbf{s} \xrightarrow{i} \mathbf{t}$ if when we write $\phi\left(x_{i}\right)\left(v_{\mathbf{s}}\right)$ and $\phi\left(y_{i}\right)\left(v_{\mathbf{t}}\right)$ respectively as linear combinations in the basis \mathcal{B}

$$
\begin{aligned}
\phi\left(x_{i}\right)\left(v_{\mathbf{s}}\right) & =\cdots+c_{\mathbf{t}, \mathbf{s}} v_{\mathbf{t}}+\cdots \\
\phi\left(y_{i}\right)\left(v_{\mathbf{t}}\right) & =\cdots+d_{\mathbf{s}, \mathbf{t}} v_{\mathbf{s}}+\cdots
\end{aligned}
$$

then $c_{\mathbf{t}, \mathbf{s}} \neq 0$ or $d_{\mathbf{s}, \mathbf{t}} \neq 0$.
The resulting edge-colored directed graph is the supporting graph for the basis \mathcal{B} for the \mathfrak{g}-module V. We sometimes attach the coefficients $\left(c_{\mathbf{t}, \mathbf{s}}, d_{\mathbf{s}, \mathbf{t}}\right)$ to the edges $\mathbf{s} \xrightarrow{i} \mathbf{t}$ and call this the representation diagram for the basis \mathcal{B}. Notice that:

$$
\begin{aligned}
\phi\left(x_{i}\right)\left(v_{\mathbf{s}}\right) & =\sum_{\mathbf{t} \in R, \mathbf{s} \rightarrow \mathbf{i}} c_{\mathbf{t}, \mathbf{s}} v_{\mathbf{t}} \\
\phi\left(y_{i}\right)\left(v_{\mathbf{s}}\right) & =\sum_{\mathbf{r} \in R, \mathbf{r} \rightarrow \mathbf{i}} d_{\mathbf{r}, \mathbf{s}} v_{\mathbf{r}} \\
\phi\left(h_{i}\right)\left(v_{\mathbf{s}}\right) & =m_{i}(\mathbf{s}) v_{\mathbf{s}}
\end{aligned}
$$

Some facts about supporting graphs and representation diagrams:

1. Let $\mu=\left(m_{1}(\mathbf{s}), \ldots, m_{n}(\mathbf{s})\right)$ and $\nu=\left(m_{1}(\mathbf{t}), \ldots, m_{n}(\mathbf{t})\right)$. If $\mathbf{s} \xrightarrow{i} \mathbf{t}$ in a supporting graph R, then

$$
\mu+\alpha_{i}=\nu
$$

where α_{i} is the i th row of the matrix A for the GCM graph (Γ, A).
2. The directed graph R is the order diagram for a ranked poset.
3. For any $1 \leq i \leq n$ and any \mathbf{s} in R, we have $m_{i}(\mathbf{s})=2 \rho_{i}(\mathbf{s})-l_{i}(\mathbf{s})$, where $\rho_{i}(\mathbf{s})$ is the rank of \mathbf{s} in its i-component of R and $l_{i}(\mathbf{s})$ is the length of this component. That is,

$$
\phi\left(h_{i}\right)\left(v_{\mathbf{s}}\right)=\left(2 \rho_{i}(\mathbf{s})-l_{i}(\mathbf{s})\right) v_{\mathbf{s}}
$$

4. If V is irreducible, then R is connected, has a unique maximal element (corresponding to the maximal vector for the \mathfrak{g}-module V), and has a unique minimal element.
5. If R is connected, then R is "rank symmetric, rank unimodal, and strongly Sperner."
6. If V is irreducible with highest weight λ, then R has this many elements

$$
\operatorname{card}(R) \stackrel{\text { Theorem }}{=} \frac{\Pi_{\alpha \in \Phi^{+}}\langle\lambda+\varrho, \alpha\rangle}{\Pi_{\alpha \in \Phi^{+}}\langle\varrho, \alpha\rangle}
$$

has rank generating function

$$
\operatorname{rgf}(R, q):=\sum_{\mathbf{s} \in R} q^{\operatorname{rank}(\mathbf{s})} \stackrel{\text { Theorem }}{=} \frac{\Pi_{\alpha \in \Phi^{+}}\left(1-q^{\langle\lambda+\varrho, \alpha\rangle}\right)}{\Pi_{\alpha \in \Phi^{+}}\left(1-q^{\langle\varrho, \alpha\rangle}\right)},
$$

and has weight-multiplicity generating function or "character"

$$
\operatorname{char}(R):=\sum_{\mathbf{s} \in R} e_{w t(\mathbf{s})} \stackrel{\text { Theorem }}{=} \frac{\sum_{\sigma \in W} \operatorname{det}(\sigma) e_{\sigma(\varrho+\lambda)}}{e_{\varrho} \Pi_{\alpha \in \Phi^{+}}\left(1-e_{-\alpha}\right)}
$$

The notation here might require some explanation...
7. Almost all weight bases for V share the same supporting graph M which contains all other supporting graphs for V as edge-colored subgraphs. We call M the maximal support for V.
$\underline{\text { Some combinatorial properties for a weight basis } \mathcal{B} \text { with supporting graph } R \text { : }}$

Edge-minimizing Say \mathcal{B} is edge-minimizing if no other weight basis for V has a supporting graph with fewer edges than R has.
Locally edge-minimizing Say \mathcal{B} is locally edge-minimizing if no other weight basis for V has a supporting graph that is contained in R as a proper edge-colored subgraph.
Modular lattice Say \mathcal{B} is a modular lattice weight basis if the supporting graph R is a modular lattice when viewed as a partially ordered set.
Solitary Say \mathcal{B} is solitary if any other weight basis for V with supporting graph R is "diagonally equivalent" to \mathcal{B} (i.e. comprised of scalar multiples of the basis vectors for \mathcal{B}).

> In some sense, solitary bases, if they exist, are uniquely determined by their supporting graphs.

> | There are a finite number of supporting graphs for V, |
| :--- |
| and thus at most a finite number of solitary bases. |

But, there's a problem:

- Which comes first: the weight basis or the supporting graph?
- We will have nice posets with lots of nice combinatorial properties \quad IF we have weight bases in hand.
- Before 1995 and aside from some special cases, the only "explicit" weight bases for irreducible representations that had been obtained were for the irreducible representations of $\mathfrak{g}\left(A_{n}\right)$ - by Gel'fand and Tsetlin (Moscow, 1950).
- If we start with the "right" posets, and somehow use information from the order diagrams to find edge coefficients, then we can realize representations.

Here's some of what we know now:

Family of representations	Bases considered	Solitary?	Locally edge- minimizing?	Modular lattice?	Edge- minimizing?
The irreducible reps. of $\mathfrak{s l}(n, \mathbb{C})$	Both GT"left" and "right" bases	Yes [Don3]	Yes [Don3]	Yes [Don3]	Open

[Don1] R. G. Donnelly, "Symplectic analogs of $L(m, n)$," J. Comb. Th. Series A 88 (1999), 217-234.
[Don2] R. G. Donnelly, "Explicit constructions of the fundamental representations of the symplectic Lie algebras," J. Algebra, 233 (2000), p. 37-64.
[Don3] R. G. Donnelly, "Extremal properties of bases for representations of semisimple Lie algebras," J. Algebraic Comb. 17 (2003), 255-282.
[Don4] R. G. Donnelly, "Extremal bases for the adjoint representations of the simple Lie algebras," Comm. Alg., to appear.
[Don5] R. G. Donnelly, "Explicit constructions of the fundamental representations of the odd orthogonal Lie algebras," in preparation.
[DLP1] R. G. Donnelly, S. J. Lewis, and R. Pervine, "Constructions of representations of $\mathfrak{o}(2 n+1, \mathbb{C})$ that imply Molev and ReinerStanton lattices are strongly Sperner," Discrete Math. 263 (2003), 61-79.
[DLP2] R. G. Donnelly, S. J. Lewis, and R. Pervine, "Solitary and edge-minimal bases for representations of the simple Lie algebra $G_{2}, "$ Discrete Math., to appear.
[Mol1] A. Molev, "A basis for representations of symplectic Lie algebras," Comm. Math. Phys. 201 (1999), 591-618.
[Mol2] A. Molev, "A weight basis for representations of even orthogonal Lie algebras," in "Combinatorial Methods in Representation Theory," Adv. Studies in Pure Math. 28 (2000), 221-240.
[Mol3] A. Molev, "Weight bases of Gel'fand-Tsetlin type for representations of classical Lie algebras," J. Phys. A: Math. Gen. $\mathbf{3 3}$ (2000), 4143-4168.

What is any of this "useful" for?

- Solving combinatorics problems

For example, we have used certain of our symplectic and odd orthogonal representation constructions to resolve in [Don1] and [DLP1] respectively two "Sperner" conjectures of Vic Reiner and Dennis Stanton (Univ. of Minnesota) about some related families of distributive lattices. In [Don1] and elsewhere we obtain some generating function identities which are difficult to obtain combinatorially.

- Constructing new bases for families of irreducible representations

For example, it appears that our constructions of the fundamental representations of the symplectic Lie algebra [Don2] were the first completely explicit constructions of a (non-routine) family of irreducible representations of semisimple Lie algebras found since the Gel'fand-Tsetlin construction for $\mathfrak{s l}(n, \mathbb{C})$ was given in 1950.

- Studying existing bases from an extremal, combinatorial viewpoint

For example, in [Don3] we determined precisely when the two Gel'fand-Tsetlin bases for a given irreducible representation of $\mathfrak{s l}(n, \mathbb{C})$ coincide by looking at the combinatorics of their supporting graphs. In a similar way we have also made connections between some of Molev's bases and some of our bases in [Don2], [Don3], [Don5], and [DLP1].

Some general questions:

The case by case results give some evidence for affirmative answers to the following questions:

- Does every irreducible representation have a solitary basis?

Molev's bases seem to be good candidates in the classical cases. Does locally edge-minimizing imply solitary, or vice-versa?

- Does every irreducible representation have a modular lattice basis?

Does edge-minimizing imply modular lattice, or vice-versa?

- For supporting graphs for $\mathfrak{s l}(2, \mathbb{C})$ modules, does locally edge-minimizing imply edge-minimizing?

An affirmative answer would yield surprising results: it would show that any supporting graph for any irreducible representation of a semisimple Lie algebra has a "symmetric chain decomposition." This would resolve many longstanding combinatorics conjectures.

What's my motivation?

- To continue adding to a growing collection of beautiful and interesting combinatorial manifestations of semisimple Lie algebra representations.
- To enjoy this interaction between combinatorics and Lie representation theory.
- To obtain new combinatorial and algebraic results.
- Someday, combinatorialize Lie theory.

