Combinatorial models for Lie algebra representations Rob Donnelly April 14, 2006

Boolean lattices, revisited:

Let $\mathfrak{B}_n := \{$ subsets of $\{1, 2, \ldots, n\} \}$. We think of \mathfrak{B}_n as a partially ordered set with respect to subset containment " \subseteq ," so we have $S \subseteq T$ for $S, T \in \mathfrak{B}_n$ iff S is a subset of T when we think of S and T as subsets of $\{1, 2, \ldots, n\}$. For S and T in \mathfrak{B}_n , write $S \to T$ iff $S \subseteq T$ and $|T \setminus S| = 1$. These edges are depicted in the order diagram for \mathfrak{B}_3 below:

The "Boolean Lattice" \mathfrak{B}_3

All of the edges are taken to be pointing "up."

Let $V = V[\mathfrak{B}_n] = \operatorname{span}_{\mathbb{C}} \{ v_S \mid S \in \mathfrak{B}_n \}$, a 2ⁿ-dimensional complex vector space. The subalgebra of $\mathfrak{gl}(V)$ generated by the following linear transformations X, Y, and H on V is isomorphic to $\mathfrak{g}(A_1)$:

$$\begin{array}{lcl} X(v_S) &:=& \displaystyle\sum_{T \in \mathfrak{B}_n, S \to T} v_T \\ Y(v_S) &:=& \displaystyle\sum_{R \in \mathfrak{B}_n, R \to S} v_R \\ H(v_S) &:=& \displaystyle (2|S|-n) \, v_S \\ &\uparrow &\uparrow \\ \mathrm{rank} & \mathrm{length} \end{array}$$

So in our example above, $X(v_{\{2\}}) = v_{\{1,2\}} + v_{\{2,3\}}, Y(v_{\{2\}}) = v_{\emptyset}$, and $H(v_{\{2\}}) = (2 \cdot 1 - 3)v_{\{2\}} = -v_{\{2\}}$.

Question:

Given <u>any</u> complex finite-dimensional representation of a complex finite-dimensional semisimple Lie algebra, is it possible to find a similar kind of combinatorial model?

Answer:

Yes. Here's how.

Let $\mathfrak{g} := \mathfrak{g}(\Gamma, A)$ for a GCM graph (Γ, A) on n nodes so that \mathfrak{g} is finite-dimensional. In particular, \mathfrak{g} is semisimple. Given any representation $\phi : \mathfrak{g} \to \mathfrak{gl}(V)$, there exists a basis $\mathcal{B} = \{v_s\}_{s \in R}$ (for now R is just an index set of the appropriate size) of common eigenvectors for the $\phi(h_i)$'s:

$$\phi(h_i)(v_{\mathbf{s}}) = m_i(\mathbf{s})v_{\mathbf{s}}.$$

The eigenvalues $m_i(\mathbf{s})$ are all integers.

We will use elements of R as vertices. We declare that there is a colored directed edge $\mathbf{s} \xrightarrow{i} \mathbf{t}$ if when we write $\phi(x_i)(v_{\mathbf{s}})$ and $\phi(y_i)(v_{\mathbf{t}})$ respectively as linear combinations in the basis \mathcal{B}

$$\begin{array}{lll} \phi(x_i)(v_{\mathbf{s}}) & = & \cdots + c_{\mathbf{t},\mathbf{s}}v_{\mathbf{t}} + \cdots \\ \phi(y_i)(v_{\mathbf{t}}) & = & \cdots + d_{\mathbf{s},\mathbf{t}}v_{\mathbf{s}} + \cdots \end{array}$$

then $c_{\mathbf{t},\mathbf{s}} \neq 0$ or $d_{\mathbf{s},\mathbf{t}} \neq 0$.

The resulting edge-colored directed graph is the <u>supporting graph</u> for the basis \mathcal{B} for the \mathfrak{g} -module V. We sometimes attach the coefficients $(c_{\mathbf{t},\mathbf{s}}, d_{\mathbf{s},\mathbf{t}})$ to the edges $\mathbf{s} \xrightarrow{i} \mathbf{t}$ and call this the <u>representation diagram</u> for the basis \mathcal{B} . Notice that:

$$\begin{split} \phi(x_i)(v_{\mathbf{s}}) &= \sum_{\mathbf{t}\in R, \mathbf{s} \to \mathbf{t}} c_{\mathbf{t}, \mathbf{s}} v_{\mathbf{t}} \\ \phi(y_i)(v_{\mathbf{s}}) &= \sum_{\mathbf{r}\in R, \mathbf{r} \to \mathbf{s}} d_{\mathbf{r}, \mathbf{s}} v_{\mathbf{r}} \\ \phi(h_i)(v_{\mathbf{s}}) &= m_i(\mathbf{s}) v_{\mathbf{s}} \end{split}$$

Some facts about supporting graphs and representation diagrams:

1. Let $\mu = (m_1(\mathbf{s}), \dots, m_n(\mathbf{s}))$ and $\nu = (m_1(\mathbf{t}), \dots, m_n(\mathbf{t}))$. If $\mathbf{s} \xrightarrow{i} \mathbf{t}$ in a supporting graph R, then

$$\mu + \alpha_i = \nu,$$

where α_i is the *i*th row of the matrix A for the GCM graph (Γ, A) .

- 2. The directed graph R is the order diagram for a ranked poset.
- 3. For any $1 \le i \le n$ and any **s** in R, we have $m_i(\mathbf{s}) = 2\rho_i(\mathbf{s}) l_i(\mathbf{s})$, where $\rho_i(\mathbf{s})$ is the rank of **s** in its *i*-component of R and $l_i(\mathbf{s})$ is the length of this component. That is,

$$\phi(h_i)(v_{\mathbf{s}}) = (2\rho_i(\mathbf{s}) - l_i(\mathbf{s})) v_{\mathbf{s}}$$

- 4. If V is irreducible, then R is connected, has a unique maximal element (corresponding to the maximal vector for the g-module V), and has a unique minimal element.
- 5. If R is connected, then R is "rank symmetric, rank unimodal, and strongly Sperner."

6. If V is irreducible with highest weight λ , then R has this many elements

$$\operatorname{card}(R) \stackrel{\mathrm{Theorem}}{=} \frac{\prod_{\alpha \in \Phi^+} \langle \lambda + \varrho, \alpha \rangle}{\prod_{\alpha \in \Phi^+} \langle \varrho, \alpha \rangle}$$

has rank generating function

$$\operatorname{rgf}(R,q) := \sum_{\mathbf{s} \in R} q^{\operatorname{rank}(\mathbf{s})} \xrightarrow{\operatorname{Theorem}} \frac{\prod_{\alpha \in \Phi^+} (1 - q^{\langle \lambda + \varrho, \alpha \rangle})}{\prod_{\alpha \in \Phi^+} (1 - q^{\langle \varrho, \alpha \rangle})},$$

and has weight-multiplicity generating function or "character"

$$\operatorname{char}(R) := \sum_{\mathbf{s} \in R} e_{wt(\mathbf{s})} \xrightarrow{\mathrm{Theorem}} \frac{\sum_{\sigma \in W} \det(\sigma) e_{\sigma(\varrho+\lambda)}}{e_{\varrho} \prod_{\alpha \in \Phi^+} (1 - e_{-\alpha})}.$$

The notation here might require some explanation...

7. Almost all weight bases for V share the same supporting graph M which contains all other supporting graphs for V as edge-colored subgraphs. We call M the maximal support for V.

Some combinatorial properties for a weight basis \mathcal{B} with supporting graph R:

Edge-minimizing Say \mathcal{B} is <u>edge-minimizing</u> if no other weight basis for V has a supporting graph with fewer edges than R has.

Locally edge-minimizing Say \mathcal{B} is <u>locally edge-minimizing</u> if no other weight basis for V has a supporting graph that is contained in R as a proper edge-colored subgraph.

Modular lattice Say \mathcal{B} is a <u>modular lattice</u> weight basis if the supporting graph R is a modular lattice when viewed as a partially ordered set.

Solitary Say \mathcal{B} is <u>solitary</u> if any other weight basis for V with supporting graph R is "diagonally equivalent" to \mathcal{B} (i.e. comprised of scalar multiples of the basis vectors for \mathcal{B}).

In some sense, solitary bases, if they exist, are uniquely determined by their supporting graphs.

There are a finite number of supporting graphs for V, and thus at most a finite number of solitary bases.

But, there's a problem:

- Which comes first: the weight basis or the supporting graph?
- We will have nice posets with lots of nice combinatorial properties **IF** we have weight bases in hand.
- Before 1995 and aside from some special cases, the only "explicit" weight bases for irreducible representations that had been obtained were for the irreducible representations of $\mathfrak{g}(A_n)$ — by Gel'fand and Tsetlin (Moscow, 1950).
- If we start with the "right" posets, and somehow use information from the order diagrams to find edge coefficients, then we can realize representations.

Family of representations	Bases considered	Solitary?	Locally edge- minimizing?	Modular lattice?	Edge- minimizing?
The irreducible reps. of $\mathfrak{sl}(n,\mathbb{C})$	Both GT "left" and "right" bases	Yes [Don3]	Yes [Don3]	Yes [Don3]	Open
The fundamental reps. of $\mathfrak{sp}(2n,\mathbb{C})$	Both bases of [Don2]	Yes [Don3]	Yes [Don3]	Yes [Don1]	Open
Irreducible one-dimensional weight space reps.	The (essentially) unique weight basis	Yes [Don3]	Yes [Don3]	Yes [Don3]	Yes [Don3]
Adjoint reps. of the simple Lie algebras	The n extremal bases of [Don4]	Yes [Don4]	Yes [Don4]	Yes [Don4]	Yes [Don4]
The fundamental reps. of $\mathfrak{so}(2n+1,\mathbb{C})$	Both bases of [Don5]	Yes [Don5]	Yes [Don5]	Yes [Don5]	Open
The "one-rowed" reps. of $\mathfrak{so}(2n+1,\mathbb{C})$	Both bases of [DLP1]	Yes [DLP1]	Yes [DLP1]	Yes [DLP1]	Open
The "one-rowed" reps. of G_2	Both bases of [DLP1]	Yes [DLP2]	Yes [DLP2]	Yes [DLP1]	Open
The irreducible reps. of $\mathfrak{sp}(2n, \mathbb{C}), \mathfrak{so}(2n, \mathbb{C}),$ and $\mathfrak{so}(2n+1, \mathbb{C})$	Molev's bases in [Mol1], [Mol2], and [Mol3]	Open	Open	Open	Open

Here's some of what we know now:

[Don1] R. G. Donnelly, "Symplectic analogs of L(m, n)," J. Comb. Th. Series A 88 (1999), 217-234.

[Don2] R. G. Donnelly, "Explicit constructions of the fundamental representations of the symplectic Lie algebras," J. Algebra, 233 (2000), p. 37-64.

[Don3] R. G. Donnelly, "Extremal properties of bases for representations of semisimple Lie algebras," J. Algebraic Comb. 17 (2003), 255–282.

[Don4] R. G. Donnelly, "Extremal bases for the adjoint representations of the simple Lie algebras," Comm. Alg., to appear.

[Don5] R. G. Donnelly, "Explicit constructions of the fundamental representations of the odd orthogonal Lie algebras," in preparation.

[DLP1] R. G. Donnelly, S. J. Lewis, and R. Pervine, "Constructions of representations of $\mathfrak{o}(2n+1,\mathbb{C})$ that imply Molev and Reiner-Stanton lattices are strongly Sperner," *Discrete Math.* **263** (2003), 61–79.

[DLP2] R. G. Donnelly, S. J. Lewis, and R. Pervine, "Solitary and edge-minimal bases for representations of the simple Lie algebra G_2 ," Discrete Math., to appear.

[Mol1] A. Molev, "A basis for representations of symplectic Lie algebras," Comm. Math. Phys. 201 (1999), 591-618.

[Mol2] A. Molev, "A weight basis for representations of even orthogonal Lie algebras," in "Combinatorial Methods in Representation Theory," Adv. Studies in Pure Math. 28 (2000), 221-240.

[Mol3] A. Molev, "Weight bases of Gel'fand-Tsetlin type for representations of classical Lie algebras," J. Phys. A: Math. Gen. 33 (2000), 4143–4168.

What is any of this "useful" for?

• Solving combinatorics problems

For example, we have used certain of our symplectic and odd orthogonal representation constructions to resolve in [Don1] and [DLP1] respectively two "Sperner" conjectures of Vic Reiner and Dennis Stanton (Univ. of Minnesota) about some related families of distributive lattices. In [Don1] and elsewhere we obtain some generating function identities which are difficult to obtain combinatorially.

• Constructing new bases for families of irreducible representations

For example, it appears that our constructions of the fundamental representations of the symplectic Lie algebra [Don2] were the first completely explicit constructions of a (non-routine) family of irreducible representations of semisimple Lie algebras found since the Gel'fand-Tsetlin construction for $\mathfrak{sl}(n, \mathbb{C})$ was given in 1950.

• Studying existing bases from an extremal, combinatorial viewpoint

For example, in [Don3] we determined precisely when the two Gel'fand-Tsetlin bases for a given irreducible representation of $\mathfrak{sl}(n,\mathbb{C})$ coincide by looking at the combinatorics of their supporting graphs. In a similar way we have also made connections between some of Molev's bases and some of our bases in [Don2], [Don3], [Don5], and [DLP1].

Some general questions:

The case by case results give some evidence for affirmative answers to the following questions:

• Does every irreducible representation have a solitary basis?

Molev's bases seem to be good candidates in the classical cases. Does locally edge-minimizing imply solitary, or vice-versa?

• Does every irreducible representation have a modular lattice basis?

Does edge-minimizing imply modular lattice, or vice-versa?

• For supporting graphs for $\mathfrak{sl}(2,\mathbb{C})$ modules, does locally edge-minimizing imply edge-minimizing?

An affirmative answer would yield surprising results: it would show that any supporting graph for any irreducible representation of a semisimple Lie algebra has a "symmetric chain decomposition." This would resolve many longstanding combinatorics conjectures.

What's my motivation?

- To continue adding to a growing collection of beautiful and interesting combinatorial manifestations of semisimple Lie algebra representations.
- To enjoy this interaction between combinatorics and Lie representation theory.
- To obtain new combinatorial and algebraic results.
- Someday, combinatorialize Lie theory.