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Boolean lattices, revisited:

Let B, = {subsets of {1,2,... ,n}} We think of 9B,, as a partially ordered set with respect to subset
containment “C,” so we have S C T for S,T € B,, iff S is a subset of T" when we think of S and T as subsets
of {1,2,...,n}. For S and T in B,,, write S — T iff S C T and |T'\ S| = 1. These edges are depicted in the
order diagram for 83 below:

{1, 2, 3}
{1, 2} {2, 3}
{1} {3}
The “Boolean Lattice” B3

All of the edges are taken to be pointing “up.”

Let V = V[B,] = spanc{vs | S € B,}, a 2"-dimensional complex vector space. The subalgebra of gl(V')

generated by the following linear transformations X, Y, and H on V is isomorphic to g(A4;):

X(vsg) = Z vr

TeB,,S—T

Y(’Us) = Z VR
ReB,,,R—S

H(vg) := (2|S|—n)vs
T 1

rank  length
So in our example above, X (v2}) = v{1,2} + V{2,3}, Y (v23) = vg, and H(v(a)) = (2- 1 = 3)v(a) = —viay-
Question:

Given any complex finite-dimensional representation of a complex finite-dimensional semisimple Lie algebra,
is it possible to find a similar kind of combinatorial model?



Answer:
Yes. Here’s how.

Let g := g(I', A) for a GCM graph (T, A) on n nodes so that g is finite-dimensional. In particular, g is
semisimple. Given any representation ¢ : g — gl(V'), there exists a basis B = {vs}secr (for now R is just an

index set of the appropriate size) of common eigenvectors for the ¢(h;)’s:
B(hi) (vs) = mi(s)us.
The eigenvalues m;(s) are all integers.

We will use elements of R as vertices. We declare that there is a colored directed edge s %, ¢ if when we

write ¢(z;)(vs) and ¢(y;)(v) respectively as linear combinations in the basis B
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then ¢y s # 0 or dg ¢ 7# 0.

The resulting edge-colored directed graph is the supporting graph for the basis B for the g-module V. We

sometimes attach the coefficients (cg s, ds ) to the edges s 4 t and call this the representation diagram for
the basis B. Notice that:

Px)(vs) = > cest
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d(yi)(vs) = Z dys Ur
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¢(hi)(vs) = mi(s)vs

Some facts about supporting graphs and representation diagrams:

1. Let = (my(s),...,mu(s)) and v = (my(t),...,my,(t)). If s Ltina supporting graph R, then
pt+o; =v,
where «; is the ith row of the matrix A for the GCM graph (T, A).
2. The directed graph R is the order diagram for a ranked poset.

3. For any 1 < ¢ < n and any s in R, we have m;(s) = 2p;(s) — l;(s), where p;(s) is the rank of s in its

i-component of R and [;(s) is the length of this component. That is,
¢(hi)(vs) = (2pi(s) — Li(s) ) vs.

4. Tf V is irreducible, then R is connected, has a unique maximal element (corresponding to the maximal
vector for the g-module V), and has a unique minimal element.

5. If R is connected, then R is “rank symmetric, rank unimodal, and strongly Sperner.”



6. If V is irreducible with highest weight A\, then R has this many elements

card(R) Iy (0.0)
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and has weight-multiplicity generating function or “character”

ZO’EW det(g)ea(Q+A)
eollpca+ (1—-e_a) ’

Char(R) = Z ewt(s) Theorem
sER

The notation here might require some explanation. . .

7. Almost all weight bases for V' share the same supporting graph M which contains all other supporting
graphs for V' as edge-colored subgraphs. We call M the maximal support for V.

Some combinatorial properties for a weight basis 5 with supporting graph R:

Edge-minimizing Say B is edge-minimizing if no other weight basis for V' has a supporting graph
with fewer edges than R has.
Locally edge-minimizing Say B is locally edge-minimizing if no other weight basis for V has a

supporting graph that is contained in R as a proper edge-colored subgraph.

Modular lattice Say B is a modular lattice weight basis if the supporting graph R is a modular
lattice when viewed as a partially ordered set.

Solitary Say B is solitary if any other weight basis for V' with supporting graph R is “diagonally

equivalent” to B (i.e. comprised of scalar multiples of the basis vectors for B).

In some sense, solitary bases, if they exist, are uniquely determined by their supporting graphs.

There are a finite number of supporting graphs for V,

and thus at most a finite number of solitary bases.

But, there’s a problem:

e Which comes first: the weight basis or the supporting graph?

e We will have nice posets with lots of nice combinatorial properties we have weight bases in
hand.

e Before 1995 and aside from some special cases, the only “explicit” weight bases for irreducible repre-
sentations that had been obtained were for the irreducible representations of g(A4,,) — by Gel’fand and
Tsetlin (Moscow, 1950).

o If we start with the “right” posets, and somehow use information from the order diagrams to find edge

coefficients, then we can realize representations.



Here’s some of what we know now:

Locally Modul Edee
Family of representations Bases considered Solitary? edge- oduiar .. g .
L lattice? minimizing?
minimizing?
The irreducible reps. of Both GT “left” and Yes Yes Yes o
sl(n,C) “right” bases [Don3] [Don3] [Don3] pen
The fundamental reps. of Yes Yes Yes
ap(2n, C) Both bases of [Don2] [Don3] [Don3] [Don1] Open
d-Irred}xmbie ioht The (essentially) Yes Yes Yes Yes
one-dimensional wei
8 unique weight basis [Don3] [Don3] [Don3] [Don3]
space reps.
Adjoint reps. of the The n extremal Yes Yes Yes Yes
simple Lie algebras bases of [Don4] [Don4] [Don4] [Don4] [Don4]
The fundamental reps. of Both bases of [Don5] Yes Yes Yes o
s0(2n + 1,C) oth bases of [Fon [Don5] [Don5) [Don5] pen
The “one-rowed” reps. of Both bases of Yes Yes Yes o
s0(2n +1,C) [DLP1] [DLP1] [DLP1] [DLP1] pen
The “one-rowed” reps. of Both bases of Yes Yes Yes o
Ga [DLP1] [DLP2] [DLP2] [DLP1] pen
The irreducible reps. of Molev’s bases in
sp(2n,C), so(2n,C), and [Mol1], [Mol2], and Open Open Open Open
s0(2n + 1,C) [Mol3]
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What is any of this “useful” for?

e Solving combinatorics problems

For example, we have used certain of our symplectic and odd orthogonal representation constructions to resolve
in [Donl] and [DLP1] respectively two “Sperner” conjectures of Vic Reiner and Dennis Stanton (Univ. of
Minnesota) about some related families of distributive lattices. In [Donl] and elsewhere we obtain some

generating function identities which are difficult to obtain combinatorially.

e Constructing new bases for families of irreducible representations

For example, it appears that our constructions of the fundamental representations of the symplectic Lie algebra
[Don2] were the first completely explicit constructions of a (non-routine) family of irreducible representations

of semisimple Lie algebras found since the Gel’fand-Tsetlin construction for sl(n,C) was given in 1950.

e Studying existing bases from an extremal, combinatorial viewpoint

For example, in [Don3] we determined precisely when the two Gel’fand-Tsetlin bases for a given irreducible
representation of sl(n, C) coincide by looking at the combinatorics of their supporting graphs. In a similar way
we have also made connections between some of Molev’s bases and some of our bases in [Don2], [Don3], [Don5],
and [DLP1].

Some general questions:

The case by case results give some evidence for affirmative answers to the following questions:

e Does every irreducible representation have a solitary basis?

Molev’s bases seem to be good candidates in the classical cases. Does locally edge-minimizing imply solitary,

or vice-versa?

e Does every irreducible representation have a modular lattice basis?

Does edge-minimizing imply modular lattice, or vice-versa?

e For supporting graphs for s[(2, C) modules, does locally edge-minimizing imply edge-minimizing?

An affirmative answer would yield surprising results: it would show that any supporting graph for any irre-
ducible representation of a semisimple Lie algebra has a “symmetric chain decomposition.” This would resolve

many longstanding combinatorics conjectures.

What’s my motivation?

e To continue adding to a growing collection of beautiful and interesting combinatorial manifestations

of semisimple Lie algebra representations.
e To enjoy this interaction between combinatorics and Lie representation theory.
e To obtain new combinatorial and algebraic results.

e Someday, combinatorialize Lie theory.



