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Boolean lattices, revisited:

Let Bn :=
{

subsets of {1, 2, . . . , n}
}

. We think of Bn as a partially ordered set with respect to subset
containment “⊆,” so we have S ⊆ T for S, T ∈ Bn iff S is a subset of T when we think of S and T as subsets
of {1, 2, . . . , n}. For S and T in Bn, write S → T iff S ⊆ T and |T \S| = 1. These edges are depicted in the
order diagram for B3 below:
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{1, 2, 3}

The “Boolean Lattice” B3

All of the edges are taken to be pointing “up.”

Let V = V [Bn] = spanC{vS

∣∣ S ∈ Bn}, a 2n-dimensional complex vector space. The subalgebra of gl(V )
generated by the following linear transformations X, Y , and H on V is isomorphic to g(A1):

X(vS) :=
∑

T∈Bn,S→T

vT

Y (vS) :=
∑

R∈Bn,R→S

vR

H(vS) := (2|S| − n) vS

↑ ↑
rank length

So in our example above, X(v{2}) = v{1,2} + v{2,3}, Y (v{2}) = v∅, and H(v{2}) = (2 · 1− 3)v{2} = −v{2}.

Question:

Given any complex finite-dimensional representation of a complex finite-dimensional semisimple Lie algebra,
is it possible to find a similar kind of combinatorial model?
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Answer:

Yes. Here’s how.

Let g := g(Γ, A) for a GCM graph (Γ, A) on n nodes so that g is finite-dimensional. In particular, g is
semisimple. Given any representation φ : g → gl(V ), there exists a basis B = {vs}s∈R (for now R is just an
index set of the appropriate size) of common eigenvectors for the φ(hi)’s:

φ(hi)(vs) = mi(s)vs.

The eigenvalues mi(s) are all integers.

We will use elements of R as vertices. We declare that there is a colored directed edge s i→ t if when we
write φ(xi)(vs) and φ(yi)(vt) respectively as linear combinations in the basis B

φ(xi)(vs) = · · ·+ ct,svt + · · ·

φ(yi)(vt) = · · ·+ ds,tvs + · · ·

then ct,s 6= 0 or ds,t 6= 0.

The resulting edge-colored directed graph is the supporting graph for the basis B for the g-module V . We

sometimes attach the coefficients (ct,s, ds,t) to the edges s i→ t and call this the representation diagram for
the basis B. Notice that:

φ(xi)(vs) =
∑

t∈R,s
i→t

ct,s vt

φ(yi)(vs) =
∑

r∈R,r
i→s

dr,s vr

φ(hi)(vs) = mi(s) vs

Some facts about supporting graphs and representation diagrams:

1. Let µ = (m1(s), . . . ,mn(s)) and ν = (m1(t), . . . ,mn(t)). If s i→ t in a supporting graph R, then

µ + αi = ν,

where αi is the ith row of the matrix A for the GCM graph (Γ, A).

2. The directed graph R is the order diagram for a ranked poset.

3. For any 1 ≤ i ≤ n and any s in R, we have mi(s) = 2ρi(s) − li(s), where ρi(s) is the rank of s in its
i-component of R and li(s) is the length of this component. That is,

φ(hi)(vs) = (2ρi(s)− li(s) ) vs.

4. If V is irreducible, then R is connected, has a unique maximal element (corresponding to the maximal
vector for the g-module V ), and has a unique minimal element.

5. If R is connected, then R is “rank symmetric, rank unimodal, and strongly Sperner.”
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6. If V is irreducible with highest weight λ, then R has this many elements

card(R) Theorem===
Πα∈Φ+〈λ + %, α〉

Πα∈Φ+〈%, α〉
,

has rank generating function

rgf(R, q) :=
∑
s∈R

qrank(s) Theorem===
Πα∈Φ+(1− q〈λ+%,α〉)
Πα∈Φ+(1− q〈%,α〉)

,

and has weight-multiplicity generating function or “character”

char(R) :=
∑
s∈R

ewt(s)
Theorem===

∑
σ∈W det(σ)eσ(%+λ)

e%Πα∈Φ+(1− e−α)
.

The notation here might require some explanation. . .

7. Almost all weight bases for V share the same supporting graph M which contains all other supporting
graphs for V as edge-colored subgraphs. We call M the maximal support for V .

Some combinatorial properties for a weight basis B with supporting graph R:

Edge-minimizing Say B is edge-minimizing if no other weight basis for V has a supporting graph
with fewer edges than R has.
Locally edge-minimizing Say B is locally edge-minimizing if no other weight basis for V has a
supporting graph that is contained in R as a proper edge-colored subgraph.
Modular lattice Say B is a modular lattice weight basis if the supporting graph R is a modular
lattice when viewed as a partially ordered set.
Solitary Say B is solitary if any other weight basis for V with supporting graph R is “diagonally
equivalent” to B (i.e. comprised of scalar multiples of the basis vectors for B).

In some sense, solitary bases, if they exist, are uniquely determined by their supporting graphs.

There are a finite number of supporting graphs for V ,
and thus at most a finite number of solitary bases.

But, there’s a problem:

• Which comes first: the weight basis or the supporting graph?

• We will have nice posets with lots of nice combinatorial properties IF we have weight bases in
hand.

• Before 1995 and aside from some special cases, the only “explicit” weight bases for irreducible repre-
sentations that had been obtained were for the irreducible representations of g(An) — by Gel’fand and
Tsetlin (Moscow, 1950).

• If we start with the “right” posets, and somehow use information from the order diagrams to find edge
coefficients, then we can realize representations.
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Here’s some of what we know now:

Family of representations Bases considered Solitary?

Locally

edge-

minimizing?

Modular

lattice?

Edge-

minimizing?

The irreducible reps. of

sl(n, C)

Both GT “left” and

“right” bases

Yes

[Don3]

Yes

[Don3]

Yes

[Don3]
Open

The fundamental reps. of

sp(2n, C)
Both bases of [Don2]

Yes

[Don3]

Yes

[Don3]

Yes

[Don1]
Open

Irreducible

one-dimensional weight

space reps.

The (essentially)

unique weight basis

Yes

[Don3]

Yes

[Don3]

Yes

[Don3]

Yes

[Don3]

Adjoint reps. of the

simple Lie algebras

The n extremal

bases of [Don4]

Yes

[Don4]

Yes

[Don4]

Yes

[Don4]

Yes

[Don4]

The fundamental reps. of

so(2n + 1, C)
Both bases of [Don5]

Yes

[Don5]

Yes

[Don5]

Yes

[Don5]
Open

The “one-rowed” reps. of

so(2n + 1, C)

Both bases of

[DLP1]

Yes

[DLP1]

Yes

[DLP1]

Yes

[DLP1]
Open

The “one-rowed” reps. of

G2

Both bases of

[DLP1]

Yes

[DLP2]

Yes

[DLP2]

Yes

[DLP1]
Open

The irreducible reps. of

sp(2n, C), so(2n, C), and

so(2n + 1, C)

Molev’s bases in

[Mol1], [Mol2], and

[Mol3]

Open Open Open Open
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What is any of this “useful” for?

• Solving combinatorics problems

For example, we have used certain of our symplectic and odd orthogonal representation constructions to resolve

in [Don1] and [DLP1] respectively two “Sperner” conjectures of Vic Reiner and Dennis Stanton (Univ. of

Minnesota) about some related families of distributive lattices. In [Don1] and elsewhere we obtain some

generating function identities which are difficult to obtain combinatorially.

• Constructing new bases for families of irreducible representations

For example, it appears that our constructions of the fundamental representations of the symplectic Lie algebra

[Don2] were the first completely explicit constructions of a (non-routine) family of irreducible representations

of semisimple Lie algebras found since the Gel’fand-Tsetlin construction for sl(n, C) was given in 1950.

• Studying existing bases from an extremal, combinatorial viewpoint

For example, in [Don3] we determined precisely when the two Gel’fand-Tsetlin bases for a given irreducible

representation of sl(n, C) coincide by looking at the combinatorics of their supporting graphs. In a similar way

we have also made connections between some of Molev’s bases and some of our bases in [Don2], [Don3], [Don5],

and [DLP1].

Some general questions:

The case by case results give some evidence for affirmative answers to the following questions:

• Does every irreducible representation have a solitary basis?

Molev’s bases seem to be good candidates in the classical cases. Does locally edge-minimizing imply solitary,

or vice-versa?

• Does every irreducible representation have a modular lattice basis?

Does edge-minimizing imply modular lattice, or vice-versa?

• For supporting graphs for sl(2, C) modules, does locally edge-minimizing imply edge-minimizing?

An affirmative answer would yield surprising results: it would show that any supporting graph for any irre-

ducible representation of a semisimple Lie algebra has a “symmetric chain decomposition.” This would resolve

many longstanding combinatorics conjectures.

What’s my motivation?

• To continue adding to a growing collection of beautiful and interesting combinatorial manifestations
of semisimple Lie algebra representations.

• To enjoy this interaction between combinatorics and Lie representation theory.

• To obtain new combinatorial and algebraic results.

• Someday, combinatorialize Lie theory.
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