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A result on the Word Problem for free groups

MAT 690 Coxeter Groups Seminar

Let A be a set, and let WA be the set of all finite-length words from the alphabet A∪A−1. We
refer to each element of a word in WA as a factor. Make WA a monoid using concatenation as
the operation and the empty word, denoted ε, as the identity. Let l(w) be the length of any word
w ∈ WA, with l(ε) = 0. A subword of w is a sequence of consecutive factors of w.

Say a word v ∈ WA is obtained from u ∈ WA by an elementary reduction (respectively, elementary
expansion if v is obtained from u by deleting (resp. inserting) a subword of the form aa−1 or a−1a

for some a ∈ A. Say u ∼ v if we can pass from u to v by a (possibly empty) finite sequence of
elementary reductions or expansions. In this case say u and v are freely equivalent. Say a word
w ∈ WA is reduced if it contains no subwords of the form aa−1 or a−1a.

Exercise 1 Show ∼ is an equivalence relation on WA.

For w ∈ WA, denote by [w] the equivalence class of w with respect to the equivalence relation
∼ on WA. If u, v ∈ [w], then write u → v if v is obtained from u by an elementary expansion
(or, equivalently, if u is obtained from v by an elementary reduction). So we obtain a directed
graph R(w) whose vertices are the set of words freely equivalent to w and whose directed edges
correspond to the application of one elementary expansion. Some observations:

Observation 1 The directed graph R(w) is connected. This follows from the fact that if u, v ∈
R(w), then u ∼ w and v ∼ w implies that u and v are freely equivalent. Thus there is a
sequence of elementary expansions or reductions that move us from u to v.

Observation 2 If w1 → w2 in R(w), then l(w1) = l(w2) − 2. Thus, for a path in R(w) of the
form u = u0 → u1 → · · · → up = v, we have p ≤ bl(v)/2c.

Think of directed edges in R(w) as pointing “up.” We will view R(w) as a partially ordered set
as follows: For u, v ∈ R(w), say u ≤ v if u = v or there is some sequence u → · · · → v of directed
edges from u up to v.

Exercise 2 Show that (R(w),≤) is a partially ordered set as follows:

(A) Show that ≤ is reflexive: v ≤ v for all v ∈ R(w).

(B) Show that ≤ is antisymmetric: If for any u, v ∈ R(w) we have u ≤ v and v ≤ u, then u = v.

(C) Show that ≤ is transitive: If for any w1, w2, w3 ∈ R(w) we have w1 ≤ w2 and w2 ≤ w3, then
w1 ≤ w3.

We continue with an observation about this partially ordered set R(w):

Observation 3 For any v ∈ R(w), there is a u ∈ R(w) for which u ≤ v and u is minimal in
R(w), i.e. if u′ ≤ u, then u′ = u. The reason is as follows: Let p be the largest integer such
that there is a path in R(w) from some u up to v of the form u = u0 → u1 → · · · → up = v.
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There is such a largest integer p since for any such path, we have p ≤ bl(v)/2c by Observation
2. For any such longest path, u is easily seen to be minimal.

Exercise 3 Show that if u → x and v → x for u, v, x ∈ R(w), then there exists y ∈ R(w) for

which y → u and y → v. That is, whenever

gx
↗ ↖gu gv (a “peak”) is part of a path in

R(w), then it can be replaced with some “valley”

gu gv
↖ ↗gy .

We now make the following observations:

Observation 4 For any u, v ∈ R(w), there is some y ∈ R(w) such that y ≤ u and y ≤ v. The
reason is that for any path from u to v, we may adjust any “peak” to become a “valley” as in
Exercise 3. Apply this principle again to the resulting path, and again etc, to obtain a path
which has only one valley, which therefore occurs at a lower bound y.

Observation 5 A word u ∈ R(w) is reduced if and only if it is minimal. Both directions of this
equivalence follow immediately from the definitions.

A sequence of elementary reductions applied to a word w ∈ WA is longest if, when the sequence
is applied to w, no further elementary reductions can be applied. Putting these pieces together, we
have the following theorem.

Theorem For any w ∈ WA, the poset R(w) has a unique minimal element w0. This word w0 is the

unique reduced word that is freely equivalent to w. Moreover, any longest sequence of elementary

reductions applied to w yields w0.

Proof. Existence of some minimal element is guaranteed by Observation 3. If u and u′ are both
minimal, then use Observation 4 to get y ≤ u′ and y ≤ u. Since u′ and u are minimal, then
u′ = y = u. So, there is a unique minimal element w0. By Observation 5, w0 is the unique reduced
word freely equivalent to w. Now any longest sequence applied to w corresponds to a longest path
of the form u = u0 → u1 → · · · → up = w, cf. Observation 3. Then u is minimal, and hence u = w0.

This theorem resolves the Word Problem for free groups, in that it can be used to conclude when
a word w is freely equivalent to the empty word ε: w ∼ ε if and only if ε can be obtained by
some sequence of elementary reductions of w if and only if every longest sequence of elementary
reductions applied to w produces ε.
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