A result on the Word Problem for free groups
MAT 690 Coxeter Groups Seminar

Let \mathcal{A} be a set, and let \mathcal{W}_A be the set of all finite-length words from the alphabet $\mathcal{A} \cup \mathcal{A}^{-1}$. We refer to each element of a word in \mathcal{W}_A as a factor. Make \mathcal{W}_A a monoid using concatenation as the operation and the empty word, denoted ε, as the identity. Let $l(w)$ be the length of any word $w \in \mathcal{W}_A$, with $l(\varepsilon) = 0$. A subword of w is a sequence of consecutive factors of w.

Say a word $v \in \mathcal{W}_A$ is obtained from $u \in \mathcal{W}_A$ by an elementary reduction (respectively, elementary expansion) if v is obtained from u by deleting (resp. inserting) a subword of the form aa^{-1} or $a^{-1}a$ for some $a \in \mathcal{A}$. Say $u \sim v$ if we can pass from u to v by a (possibly empty) finite sequence of elementary reductions or expansions. In this case say u and v are freely equivalent. Say a word $w \in \mathcal{W}_A$ is reduced if it contains no subwords of the form aa^{-1} or $a^{-1}a$.

Exercise 1 Show \sim is an equivalence relation on \mathcal{W}_A.

For $w \in \mathcal{W}_A$, denote by $[w]$ the equivalence class of w with respect to the equivalence relation \sim on \mathcal{W}_A. If $u, v \in [w]$, then write $u \rightarrow v$ if v is obtained from u by an elementary expansion (or, equivalently, if u is obtained from v by an elementary reduction). So we obtain a directed graph $\mathcal{R}(w)$ whose vertices are the set of words freely equivalent to w and whose directed edges correspond to the application of one elementary expansion. Some observations:

Observation 1 The directed graph $\mathcal{R}(w)$ is connected. This follows from the fact that if $u, v \in \mathcal{R}(w)$, then $u \sim w$ and $v \sim w$ implies that u and v are freely equivalent. Thus there is a sequence of elementary expansions or reductions that move us from u to v.

Observation 2 If $w_1 \rightarrow w_2$ in $\mathcal{R}(w)$, then $l(w_1) = l(w_2) - 2$. Thus, for a path in $\mathcal{R}(w)$ of the form $u = u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_p = v$, we have $p \leq \lfloor l(v)/2 \rfloor$.

Think of directed edges in $\mathcal{R}(w)$ as pointing “up.” We will view $\mathcal{R}(w)$ as a partially ordered set as follows: For $u, v \in \mathcal{R}(w)$, say $u \leq v$ if $u = v$ or there is some sequence $u \rightarrow \cdots \rightarrow v$ of directed edges from u up to v.

Exercise 2 Show that $(\mathcal{R}(w), \leq)$ is a partially ordered set as follows:

(A) Show that \leq is reflexive: $v \leq v$ for all $v \in \mathcal{R}(w)$.

(B) Show that \leq is antisymmetric: If for any $u, v \in \mathcal{R}(w)$ we have $u \leq v$ and $v \leq u$, then $u = v$.

(C) Show that \leq is transitive: If for any $w_1, w_2, w_3 \in \mathcal{R}(w)$ we have $w_1 \leq w_2$ and $w_2 \leq w_3$, then $w_1 \leq w_3$.

We continue with an observation about this partially ordered set $\mathcal{R}(w)$:

Observation 3 For any $v \in \mathcal{R}(w)$, there is a $u \in \mathcal{R}(w)$ for which $u \leq v$ and u is minimal in $\mathcal{R}(w)$, i.e. if $u' \leq u$, then $u' = u$. The reason is as follows: Let p be the largest integer such that there is a path in $\mathcal{R}(w)$ from some u up to v of the form $u = u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_p = v$. October 10, 2009
There is such a largest integer \(p \) since for any such path, we have \(p \leq \lfloor l(v)/2 \rfloor \) by Observation 2. For any such longest path, \(u \) is easily seen to be minimal.

Exercise 3 Show that if \(u \to x \) and \(v \to x \) for \(u, v, x \in \mathcal{R}(w) \), then there exists \(y \in \mathcal{R}(w) \) for \(\boxtimes \) which \(y \to u \) and \(y \to v \). That is, whenever \(\circ \to \nabla \) (a “peak”) is part of a path in \(\mathcal{R}(w) \), then it can be replaced with some “valley” \(\circ \to \nabla \).

We now make the following observations:

Observation 4 For any \(u, v \in \mathcal{R}(w) \), there is some \(y \in \mathcal{R}(w) \) such that \(y \leq u \) and \(y \leq v \). The reason is that for any path from \(u \) to \(v \), we may adjust any “peak” to become a “valley” as in Exercise 3. Apply this principle again to the resulting path, and again etc, to obtain a path which has only one valley, which therefore occurs at a lower bound \(y \).

Observation 5 A word \(u \in \mathcal{R}(w) \) is reduced if and only if it is minimal. Both directions of this equivalence follow immediately from the definitions.

A sequence of elementary reductions applied to a word \(w \in \mathcal{W}_A \) is longest if, when the sequence is applied to \(w \), no further elementary reductions can be applied. Putting these pieces together, we have the following theorem.

Theorem For any \(w \in \mathcal{W}_A \), the poset \(\mathcal{R}(w) \) has a unique minimal element \(w_0 \). This word \(w_0 \) is the unique reduced word that is freely equivalent to \(w \). Moreover, any longest sequence of elementary reductions applied to \(w \) yields \(w_0 \).

Proof. Existence of some minimal element is guaranteed by Observation 3. If \(u \) and \(u' \) are both minimal, then use Observation 4 to get \(y \leq u' \) and \(y \leq u \). Since \(u' \) and \(u \) are minimal, then \(u' = y = u \). So, there is a unique minimal element \(w_0 \). By Observation 5, \(w_0 \) is the unique reduced word freely equivalent to \(w \). Now any longest sequence applied to \(w \) corresponds to a longest path of the form \(u = u_0 \to u_1 \to \cdots \to u_p = w \), cf. Observation 3. Then \(u \) is minimal, and hence \(u = w_0 \).

This theorem resolves the Word Problem for free groups, in that it can be used to conclude when a word \(w \) is freely equivalent to the empty word \(\varepsilon \): \(w \sim \varepsilon \) if and only if \(\varepsilon \) can be obtained by some sequence of elementary reductions of \(w \) if and only if every longest sequence of elementary reductions applied to \(w \) produces \(\varepsilon \).