A result on the Word Problem for free groups

MAT 690 Coxeter Groups Seminar

Let \mathcal{A} be a set, and let $\mathcal{W}_{\mathcal{A}}$ be the set of all finite-length words from the alphabet $\mathcal{A} \cup \mathcal{A}^{-1}$. We refer to each element of a word in $\mathcal{W}_{\mathcal{A}}$ as a factor. Make $\mathcal{W}_{\mathcal{A}}$ a monoid using concatenation as the operation and the empty word, denoted ε, as the identity. Let $l(w)$ be the length of any word $w \in \mathcal{W}_{\mathcal{A}}$, with $l(\varepsilon)=0$. A subword of w is a sequence of consecutive factors of w.

Say a word $v \in \mathcal{W}_{\mathcal{A}}$ is obtained from $u \in \mathcal{W}_{\mathcal{A}}$ by an elementary reduction (respectively, elementary expansion if v is obtained from u by deleting (resp. inserting) a subword of the form $a a^{-1}$ or $a^{-1} a$ for some $a \in \mathcal{A}$. Say $u \sim v$ if we can pass from u to v by a (possibly empty) finite sequence of elementary reductions or expansions. In this case say u and v are freely equivalent. Say a word $w \in \mathcal{W}_{\mathcal{A}}$ is reduced if it contains no subwords of the form $a a^{-1}$ or $a^{-1} a$.

Exercise 1 Show \sim is an equivalence relation on $\mathcal{W}_{\mathcal{A}}$.

For $w \in \mathcal{W}_{\mathcal{A}}$, denote by $[w]$ the equivalence class of w with respect to the equivalence relation \sim on $\mathcal{W}_{\mathcal{A}}$. If $u, v \in[w]$, then write $u \rightarrow v$ if v is obtained from u by an elementary expansion (or, equivalently, if u is obtained from v by an elementary reduction). So we obtain a directed graph $\mathcal{R}(w)$ whose vertices are the set of words freely equivalent to w and whose directed edges correspond to the application of one elementary expansion. Some observations:

Observation 1 The directed graph $\mathcal{R}(w)$ is connected. This follows from the fact that if $u, v \in$ $\mathcal{R}(w)$, then $u \sim w$ and $v \sim w$ implies that u and v are freely equivalent. Thus there is a sequence of elementary expansions or reductions that move us from u to v.

Observation 2 If $w_{1} \rightarrow w_{2}$ in $\mathcal{R}(w)$, then $l\left(w_{1}\right)=l\left(w_{2}\right)-2$. Thus, for a path in $\mathcal{R}(w)$ of the form $u=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{p}=v$, we have $p \leq\lfloor l(v) / 2\rfloor$.

Think of directed edges in $\mathcal{R}(w)$ as pointing "up." We will view $\mathcal{R}(w)$ as a partially ordered set as follows: For $u, v \in \mathcal{R}(w)$, say $u \leq v$ if $u=v$ or there is some sequence $u \rightarrow \cdots \rightarrow v$ of directed edges from u up to v.

Exercise 2 Show that $(\mathcal{R}(w), \leq)$ is a partially ordered set as follows:
(A) Show that \leq is reflexive: $v \leq v$ for all $v \in \mathcal{R}(w)$.
(B) Show that \leq is antisymmetric: If for any $u, v \in \mathcal{R}(w)$ we have $u \leq v$ and $v \leq u$, then $u=v$.
(C) Show that \leq is transitive: If for any $w_{1}, w_{2}, w_{3} \in \mathcal{R}(w)$ we have $w_{1} \leq w_{2}$ and $w_{2} \leq w_{3}$, then $w_{1} \leq w_{3}$.

We continue with an observation about this partially ordered set $\mathcal{R}(w)$:

Observation 3 For any $v \in \mathcal{R}(w)$, there is a $u \in \mathcal{R}(w)$ for which $u \leq v$ and u is minimal in $\mathcal{R}(w)$, i.e. if $u^{\prime} \leq u$, then $u^{\prime}=u$. The reason is as follows: Let p be the largest integer such that there is a path in $\mathcal{R}(w)$ from some u up to v of the form $u=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{p}=v$.

There is such a largest integer p since for any such path, we have $p \leq\lfloor l(v) / 2\rfloor$ by Observation 2. For any such longest path, u is easily seen to be minimal.

Exercise 3 Show that if $u \rightarrow x$ and $v \rightarrow x$ for $u, v, x \in \mathcal{R}(w)$, then there exists $y \in \mathcal{R}(w)$ for ®
which $y \rightarrow u$ and $y \rightarrow v$. That is, whenever $\nearrow \quad$ (a "peak") is part of a path in
(1)
(1)
(1) © $\mathcal{R}(w)$, then it can be replaced with some "valley"

We now make the following observations:

Observation 4 For any $u, v \in \mathcal{R}(w)$, there is some $y \in \mathcal{R}(w)$ such that $y \leq u$ and $y \leq v$. The reason is that for any path from u to v, we may adjust any "peak" to become a "valley" as in Exercise 3. Apply this principle again to the resulting path, and again etc, to obtain a path which has only one valley, which therefore occurs at a lower bound y.

Observation 5 A word $u \in \mathcal{R}(w)$ is reduced if and only if it is minimal. Both directions of this equivalence follow immediately from the definitions.

A sequence of elementary reductions applied to a word $w \in \mathcal{W}_{\mathcal{A}}$ is longest if, when the sequence is applied to w, no further elementary reductions can be applied. Putting these pieces together, we have the following theorem.
Theorem For any $w \in \mathcal{W}_{\mathcal{A}}$, the poset $\mathcal{R}(w)$ has a unique minimal element w_{0}. This word w_{0} is the unique reduced word that is freely equivalent to w. Moreover, any longest sequence of elementary reductions applied to w yields w_{0}.

Proof. Existence of some minimal element is guaranteed by Observation 3. If u and u^{\prime} are both minimal, then use Observation 4 to get $y \leq u^{\prime}$ and $y \leq u$. Since u^{\prime} and u are minimal, then $u^{\prime}=y=u$. So, there is a unique minimal element w_{0}. By Observation $5, w_{0}$ is the unique reduced word freely equivalent to w. Now any longest sequence applied to w corresponds to a longest path of the form $u=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{p}=w$, cf. Observation 3. Then u is minimal, and hence $u=w_{0}$.

This theorem resolves the Word Problem for free groups, in that it can be used to conclude when a word w is freely equivalent to the empty word $\varepsilon: w \sim \varepsilon$ if and only if ε can be obtained by some sequence of elementary reductions of w if and only if every longest sequence of elementary reductions applied to w produces ε.

