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Abstract

Several de�nitions, facts, and theorems stated during the recent talks given by Dr. Don-
nelly relating to the �word problem� for Coxeter groups are restated in �1 to provide some
background information and notation. Three other facts, due to Casselman, are also stated
and proved as lemmas in this section. In �2, we state and prove Tits' Theorem for the word
problem on Coxeter groups. Finally, we consider some applications and corollaries of Tits'
Theorem in �3.

1 Preliminaries

Let W = 〈S|R〉 be a Coxeter group with S = {si}i∈In , where In is a �nite index set, and R =
{(sisj)mij : mii = 1,mij ∈ {∞, 2, 3, 4, . . . } for i 6= j,mij = mji}. Let I∗n denote the set of all �nite
sequences from In, including the empty sequence (). For x ∈ I∗n with x = (j1, . . . , jk), say the
length of x, denoted by l(x), is k. De�ne the following two elementary simpli�cations on elements
of I∗n:

� Length-reducing: Replace a subsequence of the form (i, i) with the empty sequence;

� Braid: Replace a subsequence of the form (i, j, i, . . . )︸ ︷︷ ︸
length mij

with (j, i, j, . . . )︸ ︷︷ ︸
length mij

.

Now, for x ∈ I∗n, let S(x) be the set of sequences y ∈ I∗n that are obtainable from x by a �nite
sequence of elementary simpli�cations. Note that y ∈ S(x) may be obtained from x by an empty
sequence of elementary simpli�cations, hence x ∈ S(x). Also, we must have the following

Fact 1. If y ∈ S(x) for some x ∈ I∗n, then l(y) ≤ l(x).

Notice that S(x) is a �nite set since it is a subset of the set of all sequences with length less
than or equal to l(x), which is a �nite set. We are now prepared to prove the following three
lemmas, which will be required in the proof of Tits' Theorem.

∗The title �Word Processing� is due to Casselman.
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Lemma 1. If y ∈ S(x), then S(y) ⊆ S(x).

Proof. Let z ∈ S(y). Then, z can be obtained from y by a �nite sequence of elementary simpli�-
cations. Now, y can be obtained from x by a �nite sequence of elementary simpli�cations, hence
z can be obtained from x by a �nite sequence of elementary simpli�cations by �rst passing from x
to y. Thus, z ∈ S(x).

Lemma 2. If y ∈ S(x) and l(x) = l(y), then S(x) = S(y).

Proof. By Lemma 1, S(y) ⊆ S(x). Since l(x) = l(y), it follows that x can be obtained from y by
a �nite sequence of braid relations, so x ∈ S(y). Applying Lemma 1 again, we have S(x) ⊆ S(y).
Hence, S(x) = S(y).

Lemma 3. Let x = (i, x′), for some i ∈ In, x′ ∈ I∗n. Then, (i, y) ∈ S(x) for all y ∈ S(x′).

Proof. Focusing on the subsequence x′ of x , we may pass to y ∈ S(x′) by a �nite sequence of
elementary simpli�cations, obtaining (i, y) from (i, x′) = x. Hence, (i, y) ∈ S(x).

Now, let T : I∗n → W be given by T (j1, . . . , jk) = sjk · · · sj1 . Note that

Fact 2. If y ∈ S(x), then T (x) = T (y).

Denote by |w| the length of the word w ∈ W , which is de�ned to be the smallest number p
such that w can be written as a product of p generators. If |w| = p and w = sip · · · si1 , then we
say sip · · · si1 is reduced. Also, for any w,w′ ∈ W , we observe

Fact 3. |w| = 0 if and only if w = ε;

Fact 4. |w| = 1 if and only if w = si, for some si ∈ S; and

Fact 5. For all si ∈ S, |wsi| = |siw| = |w| ± 1.

Let J ⊆ In. Denote by WJ the subgroup of W generated by {si}i∈J (we call this a parabolic
subgroup), which is the smallest subgroup of W containing {si}i∈J . Let W J = {w ∈ W : |wsj| >
|w| ,∀j ∈ J}. The following theorem can be found in Chapter 2 of the Bjorner and Brenti textbook
Combinatorics of Coxeter Groups (see also [3], page 13).

Theorem 1. For all w ∈ W , there exist unique elements wJ ∈ WJ and wJ ∈ W J such that
w = wJwJ . In this case, |w| =

∣∣wJ
∣∣ + |wJ | and wJ is the unique smallest length element of the

coset wWJ .

Finally, we have the following proposition, the proof of which is a direct consequence of the
proof of Tits' Theorem.

Proposition. Proving Tits' theorem is not so easy.

Proof. See �2...
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2 The Theorem and Its Proof

We state Tits' Theorem as in [2] and adapt a proof given in [1] through changes in notation and
addition of details.

Theorem. [Tits' Theorem for the Word Problem on Coxeter Groups] For x, y ∈ I∗n, T (x) = T (y)
if and only if S(x)

⋂
S(y) 6= ∅.

Proof. Suppose S(x)
⋂
S(y) 6= ∅. Then, there exists z ∈ S(x)

⋂
S(y), and by Fact 2 we obtain

T (x) = T (z) = T (y).
Now, suppose T (x) = T (y). Without loss of generality, assume l(y) ≤ l(x). De�ne the index of

of the integer pair (l(x), l(y)) to be ρ (l(x), l(y)) := 1
2
l(x) [l(x) + 1] + l(y). We induct on this index.

If ρ (l(x), l(y)) = 0, then if follows that l(x) = l(y) = 0, so x = y = () and S(x)
⋂
S(y) = {()} 6= ∅.

Assume now that ρ (l(x), l(y)) > 0, i.e. l(x) > 0. We take the following as our induction hypothesis:
if (x∗, y∗) is any pair of sequences in I∗n with T (x∗) = T (y∗), l(y∗) ≤ l(x∗), and ρ (l(x∗), l(y∗)) <
ρ (l(x), l(y)), then S(x∗)

⋂
S(y∗) 6= ∅. Note that the condition ρ (l(x∗), l(y∗)) < ρ (l(x), l(y)) can

be expressed as: either l(x∗) < l(x) or l(x∗) = l(x) and l(y∗) < l(y).
Suppose there exists z ∈ S(x) with l(z) < l(x). Then, one of the pairs (y, z) or (z, y) satis�es

the induction hypothesis, so S(z)
⋂
S(y) 6= ∅. But, S(z) ⊆ S(x) by Lemma 1, so S(x)

⋂
S(y) 6= ∅.

Hence, we may now assume that l(z) = l(x) for all z ∈ S(x).
Since l(x) > 0, x = (i, x∗), for some i ∈ In, x∗ ∈ I∗n. Suppose there exists z ∈ S(x∗) with

l(z) < l(x∗). Then, (i, z) ∈ S(x) by Lemma 3. But, l (i, z) ≤ l(i) + l(z) < 1 + l(x∗) = l(x), so S(x)
contains an element whose length is less that l(x), which is a contradiction. Thus, l(z) = l(x∗) =
l(x)− 1 for all z ∈ S(x∗).

We now show by deriving contradiction that l(y) > 0. Suppose l(y) = 0. Then, T (x) = T (y) =
ε and l(x) > 0, so we obtain l(x) ≥ 2, for, otherwise, if l(x) = 1, then T (x) = si for some si ∈ S,
and si 6= ε (see [2], page 6). With x = (i, x∗) as before, we have that S(x∗) contains no sequence
shorter than x∗ and T (x) = T (i, x∗) = T (x∗)si. But, ε = T (x) = T (x∗)si, hence T (x∗) = si. Note
that l(x∗) = l(x)−1 ≥ 1. Now, suppose l(x∗) > 1 and consider the sequence x′ := (i), so l(x′) = 1.
Then, we have T (x′) = si = T (x∗), l(x

′) < l(x∗), and l(x∗) < l(x), so the induction hypothesis
applies to the pair (x∗, x

′) to yield S(x∗)
⋂
S(x′) 6= ∅. But, S(x′) = {(i)}, so (i) ∈ S(x∗), which is

a contradiction since S(x∗) contains no sequence shorter than x∗ and l(x∗) > 1. Thus, it follows
that l(x∗) = 1, so x∗ = (i) and x = (i, x∗) = (i, i), whence () ∈ S(x), a contradiction since
l(z) = l(x) for all z ∈ S(x). Therefore, it follows that l(y) = 0 is impossible, so 0 < l(y) ≤ (l(x).

Now, we may write y = (i, y∗), where y∗ ∈ I∗n and i ∈ In is the same as in x = (i, x∗), or
y = (j, y∗), where y∗ ∈ I∗n and j ∈ In is di�erent from the i in x = (i, x∗). First, suppose y = (i, y∗),
where y∗ ∈ I∗n and i ∈ In is the same as in x = (i, x∗). Then, T (x∗)si = T (i, x∗) = T (x) = T (y) =
T (i, y∗) = T (y∗)si, so T (x∗) = T (y∗), and l(y∗) = l(y) − 1 ≤ l(x) − 1 = l(x∗) < l(x), so the
induction hypothesis applies to the pair (x∗, y∗) to yield S(x∗)

⋂
S(y∗) 6= ∅. Let z ∈ S(x∗)

⋂
S(y∗).

By Lemma 3, it follows that (i, z) ∈ S(x) and (i, z) ∈ S(y), so S(x)
⋂
S(y) 6= ∅.

Finally, suppose y = (j, y∗) where y∗ ∈ I∗n and i 6= j as in x = (i, x∗). Suppose l(y) < l(x).
Then, T (i, y) = T (y)si = T (x)si = T (i, x∗)si = T (x∗)sisi = T (x∗) and either l(i, y) ≤ l(x∗) < l(x)
or l(x∗) < l(i, y) = l(x), so (x∗, (i, y)) or ((i, y), x∗) is a pair satisfying the induction hypothesis,
so S(i, y)

⋂
S(x∗) 6= ∅. Let z ∈ S(i, y)

⋂
S(x∗). Then, we must have l(x∗) = l(z) ≤ l(i, y) ≤

l(x) = l(x∗) + 1. But, l(i, y) = l(x∗) + 1 is impossible since elementary simpli�cations reduce
length by zero or two only. Thus, l(i, y) = l(x∗), so it follows that we may pass from x∗ to (i, y)
through z by a �nite number of braid relations, hence (i, y) ∈ S(x∗) so S(x∗) = S(i, y) by Lemma
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2. Now, since z ∈ S(x∗) and x = (i, x∗), we have (i, z) ∈ S(x) by Lemma 3, so (i, i, y) ∈ S(x) since
(i, y) ∈ S(x∗). But, a length-reducing simpli�cation applied to (i, i, y) then places y ∈ S(x), which
is a contradiction since l(y) < l(x). Hence, we must have l(x) = l(y). Now, let J := {i, j} ⊆ In
and consider WJ , the subgroup of W generated by si and sj. Note that WJ is a dihedral group.
Then, T (j, x) = T (x)sj = T (y)sj = T (j, y), so |T (j, x)| = |T (j, y)| < |T (y)| = |T (x)|. Similarly,
we obtain |T (i, y)| < |T (y)|. Let w := T (x) = T (y), so that |w| > |wsi| and |w| > |wsj|. By
Theorem 1, we may write w = wJwJ , where |w| =

∣∣wJ
∣∣ + |wJ | and wJ is the unique smallest

length element of the coset wWJ . Suppose wJ is not the longest element in WJ . Then, a shortest
expression for wJ is written uniquely as a product of si's and sj's. Without loss of generality,
assume wJ ends in si. Then, wsj = wJwJsj, so |wsj| =

∣∣wJ
∣∣ + |wJsj| >

∣∣wJ
∣∣ + |wJ | = |w|, which

is a contradiction. Thus, wJ must be longest in WJ and so mij < ∞. From this, we see that
wJ can be written to end in either si or sj. Now, since w = T (y) = T (j, y∗) = T (y∗)sj, we may
write w = wJ (· · · sisjsisj) = wJ (· · · sisjsi) sj so that the expression (· · · sisjsisj) has mij factors.
Let y′ := (i, j, i, . . . , z), where z is a �xed sequence for wJ and without z the initial (i, j, i, . . . )
portion of y′ has length mij − 1. Then, T (y′) = T (y∗). Similarly, we obtain a sequence x′ :=
(j, i, j, . . . , z), for the same z as before, with T (x′) = T (x∗). Then, by the induction hypothesis,
S(y∗)

⋂
S(y′) 6= ∅ and S(x∗)

⋂
S(x′) 6= ∅. Let z1 ∈ S(x∗)

⋂
S(x′) and z2 ∈ S(y∗)

⋂
S(y′). Now,

everything in S(x′) must have the same length, for otherwise if v ∈ S(x′) is shorter than x′, then
l(i, v) ≤ l(v) + 1 < l(x′) + 1 = |w| and T (i, v) = T (v)si = T (x′)si = w, which is a contradiction.
So, it follows that we may obtain x′ from x∗ by a �nite sequence of braid simpli�cations through
z1, hence x

′ ∈ S(x∗). Similarly, we �nd y′ ∈ S(y∗). But, every sequence in S(x∗) has the same
length, so we have l(x′) = l(x∗), so S(x∗) = S(x′) by Lemma 2. Now, l(y∗) ≥ l(y′) = l(x′) = l(x∗),
so l(y∗) = l(y′) since l(y) = l(x), we have l(y∗) = l(x∗) and so l(y∗) = l(y′). Thus, S(y∗) = S(y′)
by Lemma 2. Now, (j, y′) ∈ S(y) and (i, x′) ∈ S(x) by Lemma 3, and (i, x′) = (i, j, i, j, . . .︸ ︷︷ ︸

length mij

, z) can

be obtained from (j, y′) = (j, i, j, i, . . .︸ ︷︷ ︸
length mij

, z) by a braid relation, so we have (i, x′) ∈ S(y). Therefore,

S(x)
⋂
S(y) 6= ∅.

This completes the proof.

3 Some Applications of Tits' Theorem

Corollary 1. Let y and z be shortest-length sequences in S(x), for some x ∈ I∗n. Then, we may
pass from y to z (and vice versa) by a �nite sequence of braid relations.

Proof. Since y, z ∈ S(x), we have S(y) ⊆ S(x) and S(z) ⊆ S(x) by Lemma 1, so T (y) = T (x) =
T (z) and S(y)

⋂
S(z) 6= ∅ by Tits' Theorem. Note that l(y) = l(z), since y and z are both shortest

sequences in S(x). Let w ∈ S(y)
⋂
S(z). Then, l(w) = l(y) = l(z) since l(w) ≤ l(y) = l(z) by Fact

1 and w ∈ S(x). Hence, y and w and z and w are related by �nite sequences of braid relations, so it
follows that y and z are related (by passing through w) by a �nite sequence of braid relations.

Thus, we see that if a word has more than one reduced expression, then we may move between
these reduced expressions by braid relations. Furthermore, for any z ∈ S(x) and any shortest
y ∈ S(x), for some x ∈ I∗n, we may obtain y from z by applying braid relations to a shortest-
length representation of z in S(x). Notice that we may need to perform these braid relations in
an appropriate dihedral subgroup of the original Coxeter group if mij is larger than the length of
the shortest sequence(s).
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Next, we show that for w ∈ W , |w|, which we de�ned to be the smallest number p such that w
can be written as a product of p generators, is the length of any shortest sequence in any S(x) for
which w = T (x).

Corollary 2. Let x ∈ I∗n and let y = (i1, . . . , ip) be a shortest length sequence in S(x). Let
w = T (x). Then, w = sip · · · si1, and any expression of w as a product of generators must use at
least p generators.

Proof. Since y ∈ S(x), S(x)
⋂
S(y) 6= ∅, so w = T (x) = T (y) = sip · · · si1 by Tits' Theorem.

Now, suppose sjk · · · sj1 where k < p is an expression for w as a product of generators. Then,
T (j1, . . . , jk) = sjk · · · sj1 = w = T (x), so S (j1, . . . , jk)

⋂
S(x) 6= ∅ by Tits' Theorem. Thus,

since (j1, . . . , jk) is shorter than the shortest sequence in S(x), it follows that we may obtain
(j1, . . . , jk) from x by a �nite sequence of elementary simpli�cations, so that (j1, . . . , jk) ∈ S(x),
which contradicts the minimality of y in S(x). Therefore, any expression of w as a product of
generators must use at least p generators.

Thus, for x ∈ I∗n, if w = T (x) and y is a shortest length sequence in S(x), we have |w| = l(y).
Moreover, since elementary simpli�cations change sequence length by zero or two, we also have
|w| and l(z) have the same parity for all sequences z ∈ S(x).

Corollary 3. Let x = (j1, . . . , jk) ∈ I∗n, and let w := T (x). Then w = ε if and only if () ∈ S(x).

Proof. If () ∈ S(x), then S(x)
⋂
S (()) 6= ∅, so w = T (x) = T (()) = ε by Tits' Theorem.

Conversely, if T (x) = w = ε = T (()), then S(x)
⋂
{()} = S(x)

⋂
S (()) 6= ∅ by Tits' Theorem, so

() ∈ S(x).

Therefore, we see that the word problem on Coxeter groups is solvable. Indeed, given two words
w,w′ ∈ W , we may determine if w = w′ using Corollary 3 to check if w′w−1 = ε by computing
elementary simpli�cations of x ∈ I∗n, where T (x) = w′w−1, until we either encounter () or exhaust
all elements of S(x) (recall that this set is �nite) without encountering ().

Theorem. [Eriksson's Reduced Word Theorem] Suppose
(
γi1 , . . . , γip

)
is a legal �ring sequence

from some start position λ on the SC-graph G = (Γ, A).Then, sip · · · si1 is a reduced expression in
W = W (G).

Here, the proof given in [3] proceeds by contrapositive and Tit's Theorem is used to obtain
equivalent words in W by performing elementary simpli�cations on (i1, . . . , ip). Thus, there is a
connection between Tits' Theorem and the �numbers game� discussed in Unit 1 of Dr. Donnelly's
lecture notes, which hints at the deeper connection between Coxeter groups and the numbers game.
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