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Abstract
A connection is established via conformal maps between vibrating membranes
that are isospectral with respect to shape and those that are isospectral with
respect to density. In particular, inhomogeneous circular membranes are
constructed that are isospectral to polygonal membranes of uniform density
via the Schwarz–Christoffel mapping. Although some corners of the polygons
lead to singularities in the constructed densities, the densities are shown to be
integrable.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

The vibrating membrane has many applications including drums, microphones, loudspeakers
[16] and transducers [17]. A variety of techniques for the solution of the associated
boundary value problem have been studied [14]. We use one of these techniques, conformal
mappings, here to investigate the connection between two classes of isospectral membranes,
i.e. membranes whose eigenfrequency spectra are identical. Conformal mappings have often
been used to solve boundary value problems arising in applications. The basic premise is that
the transformed problem is posed over a nicer geometry, thereby making the problem more
tractable. This arises in the study of vibrating membranes [14], electromagnetism [2] and
fluid flow [15]. Although conformal mappings are generally used only to change the geometry
of a problem, they can also be used to change the coefficients of a problem. Here we use a
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Figure 1. Isospectral shapes found by Gordon, Webb and Wolpert.
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Figure 2. Densities isospectral to a uniform circular membrane found by Gottlieb for a =
1/4, 1/2, 3/4.

conformal map to study the connection between membranes that are isospectral with respect
to shape and those that are isospectral with respect to density.

In the context of the homogeneous vibrating membrane, the existence of isospectral
shapes allows us to answer ‘no’ to the famous question ‘Can one hear the shape of a drum?’
[12]. Such shapes were first constructed for the two-dimensional membrane by Gordon, Webb
and Wolpert [4, 3, 9] using a result of Sunada [22]. The examples constructed included the
polygons shown in figure 1.

Gottlieb [10] used a conformal map to construct a class of inhomogeneous unit circular
membranes with density ρ(x, y) that were isospectral to a homogeneous unit circular
membrane with constant density ρ0:

ρ(x, y) = ρ0(1 − a2)2

[(1 − ax)2 + a2y2]2

for each a ∈ (0, 1). Figure 2 shows examples of the Gottlieb isospectral densities. Recently,
Gottlieb [11] generalized his previous result and established a similar construction showing
the isospectrality of two inhomogeneous unit circular membranes with densities ρ1(x, y) and
ρ2(x, y) respectively:

ρ2(x, y) = ρ1(x̄, ȳ)(1 − a2)2

[(1 − ax)2 + a2y2]2

for each a ∈ (0, 1), with

x̄ = (x − a)(1 − ax) − ay2

(1 − ax)2 + a2y2
, ȳ = (1 − a2)y

(1 − ax)2 + a2y2
.
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2. Conformal mappings of inhomogeneous membranes

The technique used is as follows. Let � and O be domains in the complex planes z = x + iy
and w = u + iv. Let w = F(z) be a one-to-one analytic mapping from � to O. For O and �

strict simply-connected subsets of the complex plane, the existence of the mapping F follows
by the Riemann mapping theorem (see e.g. [19, theorem 14.8]). The inhomogeneous clamped
membrane with areal density distribution ρ1(x, y)

−�U = λρ1(z)U in � U = 0 on ∂�

is mapped to the inhomogeneous clamped membrane with areal density distribution ρ2(u, v)

−�V = λρ2(w)V in O V = 0 on ∂O
with

ρ1(z) = ρ2(w)|F ′(z)|2,
cf Saff and Snider [20].

Since we know that there are isospectral polygonal membranes with uniform density and
isospectral circular membranes with varying densities, we will use a conformal map between
polygons and circles to construct a new class of isospectral densities for circular membranes
that are also isospectral to polygonal membranes.

2.1. Schwarz–Christoffel mapping

The Schwarz–Christoffel mapping is the conformal mapping w = F(z) that maps the unit disc
D = {z : |z| < 1} to a polygon P. If the polygon has n vertices wk, given in counter-clockwise
order, and interior angles αkπ (k = 1, . . . , n), then the map has the form

F(z) = A

∫ z n∏
k=1

(
1 − z

zk

)−βk

dz + B (1)

where A and B are complex constants, βk = 1−αk and zk are points on the unit circle known as
prevertices satisfying wk = F(zk), cf Ahlfors [1], Driscoll and Trefethen [8]. For a bounded
polygon with no cusps or slits, αk ∈ (0, 2). A cusp at the vertex wk yields αk = 0, while a slit
yields αk = 2. Vertices at infinity yield αk ∈ [−2, 0]. In order for the polygon to be closed,∑

βk = 2 and hence
∑

αk = n − 2, where n is the number of vertices. For polygons with
n > 3 the prevertices zk cannot generally be computed explicitly. Their computation is the
subject of a great deal of literature, notably [23, 21, 6, 24].

2.2. Density of a circular membrane resulting from a transformed polygon

Consider a homogeneous membrane on the polygon P with constant density, ρ0. This polygon
can be mapped to the unit disc D using the inverse of the Schwarz–Christoffel mapping. The
resulting circular membrane is inhomogeneous and has density ρ, with

ρ(z) = ρ0|F ′(z)|2 = ρ0|A|2
n∏

k=1

∣∣∣∣1 − z

zk

∣∣∣∣
−2βk

.

Clearly, if βk > 0 then ρ(z) has singularities on the boundary of the circular membrane. In
that case, ρ(z) is bounded except at z = zk for k = 1, . . . , n, and so∫
D

ρ(z) dz < ∞ ⇐⇒
∫

Bε(zk)

ρ(z) dA < ∞ for k = 1, . . . , n.
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Since there are constants C1, C2 such that

C1|z − zk|−2βk � ρ(z) � C2|z − zk|−2βk

on the ball Bε(zk), it suffices to consider∫
Bε(zk)

|z − zk|−2βk dA =
∫

Bε(zk)

1

|z − zk|2βk
dA

=
∫

Bε(0)

1

|z|2βk
dA

=
∫ 2π

0

∫ ε

0

1

r2βk
r dr dθ

= 2π

∫ ε

0
r1−2βk dr

= πr2(1−βk)

1 − βk

∣∣∣∣
ε

0

= πr2αk

αk

∣∣∣∣
ε

0

.

Hence ∫
D

ρ(z) dA < ∞ ⇐⇒ αk > 0 for k = 1, . . . , n.

In geometric terms, this means that the unit disc density associated with a particular polygon
will be integrable provided that the interior angles of the polygon αkπ are positive. Thus a
polygon may have no cusps and must be bounded in order to guarantee integrability of the
density of the constructed circular membrane.

3. Examples

3.1. Regular polygons mapped to circle

Let � be the regular N-sided polygon that inscribes the circle of radius 1. In this case, the
vertices are wk = exp

(
i 2kπ

N

)
and the interior angles are 2π/N yielding αk = 2/N. Fixing

the prevertices so that zk = wk, the unit disc D is mapped to the N-sided polygon � by the
Schwarz–Christoffel mapping:

w =
∫ z

0

ds

(1 − sN)2N
,

cf Kober [13]. The density of the inhomogeneous membrane associated with the disc is

ρ(z) = ρ0

∣∣∣∣dw

dz

∣∣∣∣
2

= ρ0|1 − zN |−4N
.

Figure 3 shows the homogeneous polygon inscribed in a unit circle and its corresponding
inhomogeneous density for the case N = 8. This density has eight singularities—one at each
of the prevertices zk corresponding to each vertex of the polygon. Since βk = 1 − αk =
(N − 2)/N < 1, the constructed density is in L1. This means that the eigenfunctions are
in L2, [25]. Thus there is a circular inhomogeneous membrane that is isospectral to a
regular polygon. Cureton and Kuttler [5] and Molinari [18] use this circular inhomogeneous
membrane to compute the eigenvalues of the Laplacian over regular polygons for vastly
different applications.
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Figure 3. N = 8, an eight-sided homogeneous polygon inscribed in a unit circle and its
corresponding inhomogeneous density.

Figure 4. �1 bilby and �2 hawk.

3.2. Gordon, Webb and Wolpert’s shapes mapped to circle

Let �1 and �2, shown in figure 4, be the isospectral shapes discovered by Gordon, Webb and
Wolpert [4, 3, 9]. These particular shapes were constructed using a right isosceles triangle
and a series of reflections prescribed by two equivalent Cayley graphs [9]. Other triangles can
be used to form similar pairs of isospectral shapes. These particular shapes were nicknamed
bilby and hawk in [7].

The isospectrality of these shapes means that for homogeneous membranes with constant
density ρ0, the boundary value problems

−�u = λρ0u in �i u = 0 on ∂�i

have the same eigenvalues for �1 and �2. Using Schwarz–Christoffel mappings, we transform
the unit discs D1 and D2 to �1 and �2 respectively. Prevertices for these maps were computed
using the SC toolbox [8], and are shown for �1 and �2 in figure 5. Although the prevertices
appear to cluster, they are in fact distinct because F is one-to-one, wk = F(zk) and the polygon
vertices wk are distinct.

Consider the inhomogeneous membrane associated with each disc. Each has a density of
the form

ρ(z) = ρ0|F ′(z)|2 = ρ0|A|2
n∏

k=1

∣∣∣∣1 − z

zk

∣∣∣∣
−2βk

.

The values of αk and βk for each of the polygons �1 and �2 are given in table 1. These
densities each have six singularities—one at each of the prevertices zk corresponding to a
vertex whose interior angle αkπ is less than π. All of the βk satisfy βk < 1 and so each of the
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Figure 5. �1,D1,�2 and D2, showing vertices and prevertices.
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Figure 6. Gordon, Webb and Wolpert density for D1 and D2.

Table 1. Angle information.

�1 αk 1/4 1/2 3/4 3/2 1/4 3/4 1/2 3/2
βk 3/4 1/2 1/4 −1/2 3/4 1/4 1/2 −1/2

�1 αk 1/4 3/2 1/4 3/4 3/2 1/2 1/2 3/4
βk 3/4 −1/2 3/4 1/4 −1/2 1/2 1/2 1/4

constructed densities is in L1 with eigenfunctions in L2. Thus there are physically meaningful
densities for circular inhomogeneous membranes that are isospectral to each other and to the
homogeneous shapes constructed by Gordon, Webb and Wolpert. These densities are shown
in figure 6.

Isospectrality of the bilby and hawk shapes also holds for Neumann boundary conditions
[4, 3] and has been verified numerically by Driscoll and Gottlieb [7]. Analysis identical to that
used above shows that, in the case of Neumann boundary conditions, inhomogeneous circular
membranes can be constructed that are isospectral to homogeneous membranes with the bilby
and hawk shapes.
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