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Abstract. Soil column studies are used frequently in seeking to understand the behavior of a
particular contaminant in a saturated homogeneous soil of a given type. The concentration of the
contaminant is modeled by a parabolic partial differential equation. We seek to identify the sorption
partitioning coefficient as a function of time from limited boundary data. We discuss an output least
squares formulation of the problem with Tikhonov regularization. We explicitly characterize a source
condition that determines the rate of convergence of the method. Numerical examples are presented.
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1. Introduction. The purpose of this paper is to develop theoretical and nu-
merical approaches for approximating an unknown time dependent parameter in a
parabolic partial differential equation, given limited boundary data. The equation we
shall be working with is a model of a soil column study. These column studies are
used frequently in seeking to understand the behavior of a particular contaminant
in a saturated homogeneous soil of a given type. The parameter we are seeking to
approximate is the sorption partitioning coefficient. This parameter is a measure of
the proportion of contaminant that is bound to the soil. In isothermal situations
when there are no other contaminants present, the partitioning coefficient is usually
taken to be constant. However, if there is another contaminant, e.g., sea salt, or if the
temperature is changing, the partitioning coefficient may change as well. Therefore,
strictly speaking, the partitioning coefficient is a function of some physical factor other
than time. However, if we understand the controlling physical factor as a function of
time, we may treat the partitioning coefficient also as a function of time and deduce
the true physical functional relationship after the partitioning coefficient has been
found as a function of time.

This approach will allow us considerable savings in time and resources when
determining how a partitioning coefficient varies with different physical factors. These
savings will result from identifying the partitioning coefficient’s dependence on the
relevant physical factor by means of a single column experiment rather then a large
number of separate batch tests.

Section 2 shall be devoted to a discussion of the model, the simplifying assump-
tions that are applicable, and various necessary facts about the forward problem.
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Section 3 establishes identifiability of the sorption partitioning coefficient from the
available experimental data and applies an output least squares method with Tikhonov
regularization to the parameter identification problem. The method is tested in sec-
tion 4.

2. Discussion of the model. The general approach to modeling convection-
diffusion-sorption models may be found in the work of Leij and Dane [12] and Domenico
and Schwartz [6]. Sorption of mixtures was treated by Oppenheimer [15]. A thorough
treatment of the modeling of the sorption process may be found in Oppenheimer,
Kingery, and Han [16]. Column studies are discussed in detail by Adrian, Ozkan, and
Alshawabkeh [1].

We model the one dimensional flow of water with a dissolved contaminant through
a soil column. The contaminant can be dissolved in the water or bound, that is sorbed,
to the soil. We will assume cylindrical symmetry in the column to reduce the problem
to one spatial dimension. The column will be assumed to have length L and is modeled
as the interval [0, L]. The distance from the inflow end of the column will be given
by z. The time since the start of the experiment will be given by τ . At spatial point
z and time τ, the solution concentration (in mass of contaminant per unit volume of
water) is denoted c (z, τ), and the sorbed concentration (in mass of contaminant per
unit mass of soil) is denoted q (z, τ).

We will assume the equilibrium relationship q = f(c). The function f is called
the equilibrium isotherm.

We will assume the following physical values: ρV (z) is the void density per unit
volume at spatial coordinate z, ρS(z) is the soil mass density per unit volume, A is
the cross-sectional area of the column, v is the fluid velocity, and D is the diffusivity
constant that appears in Fick’s law for diffusion. Fick’s law assumes that the rate of
diffusion of the contaminant in the fluid is given by −D∂c/∂z.

Choosing z to be any interior point of the column, τ any positive time, and Δz
and Δτ small positive numbers, the change in the amount of contaminant stored in
the section of the column [z, z + Δz] between τ and τ + Δτ is given by

∫ z+Δz

z

[AρV (η)c (η, τ + Δτ) + AρS(η)q (η, τ + Δt)

− (AρV (η)c (η, τ) + AρS(η)q (η, τ))]dη.

This will equal the total inward flux less the outward flux at z and z + Δz over the
time from τ to τ + Δτ ,

∫ τ+Δτ

τ

[
vAρV (z) c (z, s) −DAρV (z)

∂c

∂z
(z, s)

−
(
vAρV (z + Δz) c (z + Δz, s) −DAρV (z + Δz)

∂c

∂z
(z + Δz, s)

)]
ds.

Setting the two expressions equal, dividing by ΔzΔτ , and letting Δz and Δτ tend to
zero yields

A [ρV (z)c (z, τ) + ρS(z)q (z, τ)]τ = −vA [ρV (z)c (z, τ)]z + DA [ρV (z)cz (z, τ)]z .

If we assume that the mass density ρS = M/(LA) and the pore volume density
ρV = V/(LA) are constant, where M is the total mass of soil in the cylinder and V
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is the total void space in the cylinder, we obtain

[V c + Mq]τ = −vV cz + DV czz.(2.1)

We have already described the expected equilibrium relationship between the
sorbed concentration, q, and the solution concentration, which is given by q = f (c).
Since the solution concentration is changing in time we must either assume that this
equilibrium relationship holds even as c changes in time or we must specify how q
changes as c changes. For completeness we will describe the nonequilibrium modeling
approach before we make our final assumptions. The standard model [16, 12] for
sorption when c is known at each time t is

∂q

∂τ
= rF (c, q),(2.2)

where r is a sorption rate constant and F satisfies the following requirements: If
q < f(c), then F is positive; if q = f(c), then F = 0; and if q > f(c), then F is
negative. Some typical examples of the isotherm f are the Henry or linear isotherm

f(c) = ξc,

the Langmuir isotherm

f(c) =
ξc

1 + βc
,

and the Freundlich isotherm

f(c) = ξcγ .

An example of F is a simple reversible sink

F (c, q) = f(c) − q,

where the rates of sorption and desorption are the same and where, regardless of
whether the process is sorbing or disorbing, the same fixed c value will yield the same
equilibrium point. Another example of F is a simple irreversible sink

(f(c) − q)
+
,

where there is hysteresis occurring, and while a contaminant can be sorbed, it cannot
be desorbed. There are a wide variety of such models, and the reader is referred to
[16].

When the local kinetics (2.2) are combined with the conservation-of-mass equation
(2.1) previously derived, we obtain

V
∂c

∂τ
+ M

∂q

∂τ
= −vV

∂c

∂z
+ DV

∂2c

∂z2
,(2.3)

∂q

∂τ
= rF (c, q).

The equilibrium partitioning assumption is that r is much larger than D and v.
Dividing the second system by r and defining ε = 1/r, we may consider this a singular
perturbation problem:

V
∂c

∂τ
+ M

∂q

∂τ
= −vV

∂c

∂z
+ DV

∂2c

∂z2
,(2.4)

ε
∂q

∂τ
= F (c, q).



1410 K. R. FISTER, M. L. MCCARTHY, AND S. F. OPPENHEIMER

Since we will consider only cases where we are close to equilibrium, we need consider
only the outer solution to the unperturbed problem

F (c, q) = 0 or q = f (c) .

Thus, we can replace system (2.4) with

∂

∂τ
(V c + Mf(c)) = −vV

∂c

∂z
+ DV

∂2c

∂z2
.

In this paper we will accept the equilibrium partitioning assumption and use a Henry
isotherm. The linear partitioning assumption is usually valid when concentrations are
low. The common set of boundary conditions that we will be using is

c(0, τ) = 0,
∂c

∂z
(L, τ) = 0.

The first boundary condition is used to model the case where the inflow of water
contains no contaminant, and the second boundary condition models the fact that
there is no diffusion across the end of the column, only convection.

We will perform the standard change of variables [12] with respect to time and
length by introducing new variables

t = vτ/L and x = z/L.

Using these new variables, we obtain the form of the model we wish to study:

∂

∂t
(βc) = − ∂c

∂x
+ K

∂2c

∂x2
,(2.5)

c(0, t) = 0,

∂c

∂x
(1, t) = 0,

c (x, 0) = c0 (x) ,

where

β = 1 +
ξM

V
(2.6)

and

K =
D

vL

is the nondimensionalized diffusion coefficient. The pseudotime variable measures
pore volumes; that is, t = 1 is the time it takes the flow to move from the top of the
column to the bottom of the column.

In column studies, measurements of the exit solution concentration are taken.
Therefore, the extra information available is a sequence of N time measurements
taken at the end of the column x = 1,

c(1, t1), . . . , c(1, tN ).

It is worthwhile to briefly discuss how the forward model came to be. The same
model, with constant β, was successfully used to model column studies of fresh water
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sediments. However, the constant β model failed when dealing with salt water sedi-
ments, and it was hypothesized by Myers [13] that β was changing with the saline con-
centration. Since it was expected that the saline concentration would equalize much
more quickly than the concentration of the contaminant being studied, we chose to
approximate the salt concentration as being spatially uniform and, thus, β as spatially
uniform. In the technical report on this approach [14], we used a decreasing expo-
nential ansatz for the saline concentration, assuming that the concentration would be
dominated by the decay in the first eigenfunction. This yielded model fits that were
considered reasonable by the engineers on the project. Henceforth, we assume that ξ,
and hence β, is changing with time.

The initial contaminant concentration is taken to be spatially constant, c(x, 0) =
c0 > 0, because the samples have time to equilibrate before the experiment begins. It
is worth noting that this initial contaminant concentration, while physically accurate,
does not meet the boundary condition. Indeed, in the explicit solutions generated
for the technical report [14], there is a Gibb’s phenomenon. Fortunately the problem
is governed by a parabolic evolution operator, and solutions satisfy the boundary
conditions for all positive times.

2.1. Contaminant mass constraint. We will now compute the value β(0),
which is related to the equilibrium coefficient ξ; see (2.6). We will assume that we
know the total mass of soil in the column M , the total volume of water in the column
V , the cross-sectional area of the column A, the diffusivity constant D, and the fluid
velocity v. We will also assume that we know that the initial solution concentration
is a constant, c0. The mass flow of contaminant out of the tube at time t will be given
by

Ac (1, t)V/A.

Thus, if we let the process continue until almost all of the contaminant has been
flushed from the column at time tN , we have that the total mass of contaminant
present in the column at time t = 0 will be approximately

∫ tN

0

c (1, t)V dt.(2.7)

We also know that the total mass of contaminant at time t = 0 will be given by

β (0) c0V.(2.8)

Equating the expressions in (2.7) and (2.8), we obtain

β (0) ≈ 1

c0

∫ tN

0

c (1, t) dt.(2.9)

We need to add a caveat at this point. The physical system allows contaminant to
leave the cylinder only through the boundary at x = 1. However, examining the
original system and integrating with respect to x yields

∂

∂t

∫ 1

0

(βc) dx = c (0, t) − c (1, t) + K
∂c

∂x
(1, t) −K

∂c

∂x
(0, t)

= −c (1, t) −K
∂c

∂x
(0, t) .
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Integrating the previous equation with respect to t from 0 to tN and assuming that
the c (x, tN ) ≈ 0 yields

β (0) c0 ≈
∫ tN

0

c (1, t) dt +

∫ tN

0

K
∂c

∂x
(0, t) dt.

Finally, solving for β (0), we have

β (0) =
1

c0

∫ tN

0

c (1, t) dt +
1

c0

∫ tN

0

K
∂c

∂x
(0, t) dt.

Thus, the model allows for contaminant to leave the cylinder at x = 0, which will
give some discrepancy. We require that D � v, which implies that K ≈ 0, in order
to minimize this error.

3. Identification of the sorption coefficient. The forward problem is

(βc)t = −cx + Kcxx, 0 < x < 1, 0 < t < T = tN ,(3.1)

c(0, t) = 0, cx(1, t) = 0, 0 < t < T,

c (x, 0) = c0 (x) , 0 < x < 1.

Our goal is to estimate the parameter β from noisy measurements of c(1, t). Although
identification problems for parabolic equations have been addressed both theoretically
[11, 2, 3, 5, 18] and numerically [4, 10], the general framework is to consider the
problem

ut = L(a)[u] in Ω × [0, T ],(3.2)

u(x, 0) = u0(x) on Ω,

G(a)[u] = 0 on ∂Ω × [0, T ],

subject to additional information B[u] = 0 on Ω × [0, T ] or ∂Ω × [0, T ]. The spatial
operators L,G,B may be linear or quasi-linear. The unknown coefficient a may
be part of L or G and may depend on x, t, or u. The goal is to recover a from
information about u, the solution of (3.2). Although our forward problem (3.1) can
be transformed into the form (3.2) by setting u = βc, the boundary data available
from our experiment is c(1, t). Thus boundary data for the transformed problem
u(1, t) would require knowledge of β, the parameter we seek. Similar issues arise with
other transformation approaches. As in [3], trace-type functionals can then be used to
establish existence of a solution. This approach can also be implemented numerically
[10]. However, the dependence of the operators on nonlocal information can lead
to numerical instabilities. We wish to develop an algorithm that uses our available
data directly and avoids the use of nonlocal information. We begin by establishing
identifiability of the parameter β from the available data c(1, t). We apply output
least squares with Tikhonov regularization to this problem. We investigate the rate
of convergence and determine an appropriate source condition.

3.1. Identifiability. Recall the contaminant mass constraint (2.9),

β (0) ≈ 1

c0

∫ tN

0

c (1, t) dt,

discussed in section 2.1. As a consequence of this and the fact that our data is c(1, t),
it is reasonable to assume that β(0) is fixed and to let

B =
{
β ∈ H1(0, T ) | 0 < m < β(t) < M, β(0) = b

}
.
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Our existence result follows from the application of standard results; see [20, 9].
Theorem 3.1. If β ∈ B, then cβ ∈ W = L2((0, T );H1(0, 1)) and cβ(1, ·) ∈

L2(0, T ).
In order to establish the identifiability of β we must establish the injectivity of

the parameter-to-output map

β → γcβ ,

where γ denotes the trace operator

γ : L2((0, T );H1(0, 1)) → L2(0, T ), γc = c(1, t).

Theorem 3.2. Let c1(x, t) and c2(x, t) ∈ W be solutions of the direct problem
(3.1) corresponding to β1(t) and β2(t) ∈ B. If γc1 = γc2, then β1(t) = β2(t) for all
t ∈ [0, T ].

Proof. Use β1, c1 and β2, c2 in (3.1) and subtract to find

(β1c1 − β2c2)t = − (c1 − c2)x + K (c1 − c2)xx .

Let φ = β1c1 − β2c2 and rearrange terms

φt = − 1

β1
φx +

K

β1
φxx +

(β2 − β1)

β1
(Ac2) ,

where Ac = −cx + Kcxx. Multiply by φ and integrate with respect to x:

∫ 1

0

φtφdx = − 1

β1

∫ 1

0

φxφdx +
K

β1

∫ 1

0

φxxφdx +
(β2 − β1)

β1

∫ 1

0

(Ac2)φdx

= − 1

2β1

∫ 1

0

(
φ2

)
x
dx− K

β1

∫ 1

0

(φx)
2
dx +

(β2 − β1)

β1

∫ 1

0

(Ac2)φdx.

Since 0 < m < βi(t) < M, i = 1, 2, and φ(0, t) = 0, it follows that

1

2

d

dt

(
‖φ‖2

L2(0,1)

)
≤ 2M

m
‖Ac2‖L2(0,1) ‖φ‖L2(0,1) .

By results in [14] or [17], there exists a constant C1 such that

‖Ac2‖L2(0,1) ≤
C1β2(0)

t
‖c0‖L2(0,1) .

Hence

d

dt

(
‖φ‖L2(0,1)

)
≤ 2MC1β2(0)

mt
‖c0‖L2(0,1) .

Integrating this over (t1, t2) yields

‖φ‖L2(0,1) (t2) ≤ ‖φ‖L2(0,1) (t1) +
(
2MC1β2(0) ‖c0‖L2(0,1) /m

)
ln |t2/t1|

≤ ‖φ‖L2(0,1) (t1) +
(
2MC1β2(0) ‖c0‖L2(0,1) /m

)
ln |1 + ε|,

where ε = (t2 − t1)/t1. Since t2 can be chosen to be arbitrarily close to t1, and since
ln (1 + z) < z for all z > 0, it follows that

‖φ‖L2(0,1) (t2) ≤ ‖φ‖L2(0,1) (t1) +
(
2MC1β2(0) ‖c0‖L2(0,1) /m

)
ε
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for all ε > 0. Therefore ‖φ‖L2(0,1) (t2) ≤ ‖φ‖L2(0,1) (t1) or

‖β1c1 − β2c2‖L2(0,1) (t2) ≤ ‖β1c1 − β2c2‖L2(0,1) (t1).

Letting t1 approach 0, we have

‖β1c1 − β2c2‖L2(0,1) (t) ≤ ‖β1c1 − β2c2‖L2(0,1) (0) = |β1(0) − β2(0)| ‖c0‖L2(0,1) = 0

for small t. This implies that β1(t)c1(x, t) − β2(t)c2(x, t) = 0 almost everywhere on
[0, 1]. It follows from c1(1, t) = c2(1, t) that β1(t) = β2(t) for small t. Repeated
application of this argument extends the result to [0, T ].

3.2. Output least squares and Tikhonov regularization. We define

G(β) ≡ γcβ

with

G : B → L2(0, T ).

In the presence of perfect data z, we would solve the nonlinear ill-posed problem

G(β0) = z,(3.3)

where cβ0 is the solution of the direct problem with β = β0. To do this using Tikhonov
regularization would involve approximating the solution by minimizing

min
β∈B

‖G(β) − z‖2
L2(0,T ) + α‖β − β̂‖2

L2(0,T ),

where α > 0 is a small parameter and β̂ is an a priori guess of the true solution β0.
In real applications, measurement errors mean that exact data is not available. Noisy
data is assumed to have an error level δ,

∥∥zδ − z
∥∥
L2(0,T )

≤ δ.

We assume attainability of a true solution; i.e., if z ∈ L2(0, T ), there exists β0 ∈ B
such that

G(β0) = z.(3.4)

We seek the minimizer βδ
α ∈ B of

Jα(β) =
∥∥G(β) − zδ

∥∥2

L2(0,T )
+ α‖β − β̂‖2

L2(0,T )(3.5)

for appropriate choices of β̂ ∈ B and α. We begin by establishing the weak-closedness
of the map β → γcβ . This will lead to the existence of a minimizer βδ

α. Continuous
dependence on the data zδ for fixed α, and the convergence of βδ

α toward the true
parameter β0 as the noise level δ and the regularization parameter α go to zero, also
follow.

Theorem 3.3. If βn ⇀ β∗ ∈ B in H1(0, T ), then cβn ⇀ cβ∗ in W and γcβn ⇀
γc∗β in L2(0, T ).
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Proof. Since we have existence of a unique solution to (3.1) from Theorem 3.1,
we define cn = c(βn). We make a change of variables, w = e−λtc, where λ is to be
chosen. The state equation and initial and boundary conditions become

(βw)t + λβw −Kwxx + wx = 0,

w(0, t) = 0, wx(1, t) = 0, t ∈ [0, T ],

w(x, 0) = c0(x).

Let 〈·, ·〉 denote the duality between (H1(0, 1))∗ and H1(0, 1). We use the weak
definition of the transformed equation and integrate in time to obtain

0 =

∫ t

0

〈(βnwn)t, βnwn〉dt +

∫ t

0

∫ 1

0

[
λ(βnwn)2 + Kβn(wn)2x + βn(wn)xwn

]
dxdt.

(3.6)

Upon simplification, use of 0 < m < βn(t) < M, and Cauchy’s inequality, we have

m2

2

∫ 1

0

[wn(x, t)]
2
dx + λm2

∫ t

0

∫ 1

0

(wn)2dxdt + Km

∫ t

0

∫ 1

0

(wn)2xdxdt

≤ M2

2

∫ 1

0

[c0(x)]2dx +
M2

2Km

∫ t

0

∫ 1

0

(wn)2dxdt +
Km

2

∫ t

0

∫ 1

0

(wn)2xdxdt.

After dividing by m2, collecting terms, and choosing λ > (2Km3+1)M2

2Km3 , we obtain∫ 1

0

[wn(x, t)]2dxdt +
K

m

∫ t

0

∫ 1

0

(wn)2xdxdt + 2M2

∫ t

0

∫ 1

0

(wn)2dxdt

≤ M2

m2

∫ 1

0

[c0(x)]2dx.(3.7)

We can conclude that ‖wn‖L2((0,T ),H1(0,1)), and hence ‖cn‖ is uniformly bounded
independent of n. Using this bound and the state equation, we also have uniform
bounds on ‖(βncn)t‖. We can extract a subsequence such that

cn ⇀ c∗ in L2((0, T );H1(0, 1)),

(cn)t ⇀ (c∗)t in L2((0, T ); (H1(0, 1))∗),

βn → β∗ in L2(0, T ),

where c∗ and β∗ are the relevant weak limits. In order to show that c∗ = c(β∗), we
must establish that c∗ is the state solution associated with β∗. We consider the weak
form of the partial differential equation satisfied by cn,∫ T

0

〈(βncn)t, φ〉dt + K

∫ T

0

∫ 1

0

cnxφxdxdt +

∫ T

0

∫ 1

0

cnxφdxdt = 0,(3.8)

where φ ∈ L2((0, T );H1(0, 1)).
Since βn → β∗ in L2(0, T ) we know that βn ⇀ β∗ in H1(0, T ). Therefore (βn)′ ⇀

(β∗)
′ in L2(0, T ), where ′ is used to indicate the derivative here because β is a function

of one variable, t. We examine the first term in the weak definition of state solution,∫ T

0

∫ 1

0

[(βncn)t − (β∗c∗)t]φdxdt

=

∫ T

0

∫ 1

0

[(βn)′ [cn − c∗]φ + (βn − β∗)
′c∗φ

+βn((cn)t − (c∗)t)φ + (βn − β∗)(c∗)tφ] dxdt.(3.9)
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We note that, from a comparison result in [20], we have that cn → c∗ in L2((0, 1) ×
(0, T )). By (βn)′ ⇀ (β∗)

′ in L2(0, T ) and cn → c∗ in L2((0, 1) × (0, T )), the first
term of (3.9) converges to zero as n → ∞. The second term converges to zero since
(βn)′ ⇀ (β∗)

′ in L2(0, T ). The third and fourth terms converge to zero because of the
strong convergence of the βn sequence. As we pass to the limit in the weak definition
of the solution, we obtain that c∗ = c(β∗).

Existence of a minimizer βδ
α now follows from the lower semicontinuity of the

L2(0, T ) norm. Continuous dependence on the data zδ for fixed α and the convergence
of βδ

α toward the true parameter β0 follow from standard results [19].
Corollary 3.4. For any data zδ ∈ L2(0, T ), a minimizer βδ

α of (3.5) exists.
Corollary 3.5. For fixed α, the minimizers depend continuously on the data

zδ. If α(δ) satisfies

α(δ) → 0, δ2/α(δ) → 0 as δ → 0,

then

lim
δ→0

∥∥βδ
α − β0

∥∥
L2(0,T )

= 0.

3.3. Convergence rates. Although we have established convergence of the min-
imizer βδ

α to the true parameter β0, the rate of convergence may be arbitrarily slow.
We apply the theory of Engl, Hanke, and Neubauer [7] and Engl, Kunisch, and
Neubauer [8] to determine a source condition that will guarantee a certain rate of
convergence. Recall that we seek to solve the nonlinear problem (3.3), G(β) = z,

where G(β) ≡ γcβ . The true solution is β0, and β̂ is an a priori guess. Let L(β) be
the differential operator

L(β)u ≡ (βu)t + ux −Kuxx

on the domain D(L) = {u ∈ W |u(0, t) = ux(1, t) = 0}. The soil problem (3.1)
satisfies

L(β)c = 0, c(x, 0) = c0(x).

We establish next an estimate of the rate of convergence of our algorithm. Even
when our regularization parameter α is comparable to our noise level δ, convergence
requires assumptions involving c(1, t) and β0 − β̂.

Theorem 3.6. Let By ≡ −y′′ + y with

B : D(B) =
{
y ∈ H2(0, T ) | y′(0) = y′(T ) = 0

}
→ L2(0, T ).

If

B
(
β0(t) − β̂(t)

)
c(1, t)

∈ H−1(0, T )(3.10)

and if

∥∥∥∥∥∥
∫ T

t

B
(
β0(t) − β̂(t′)

)
c(1, t′)

dt′

∥∥∥∥∥∥
L2(0,T )

is sufficiently small,(3.11)
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then for the choice α ∼ δ we obtain
∥∥βδ

α − β0
∥∥
H1(0,T )

= O(
√
δ) and

∥∥G(βδ
α) − zδ

∥∥
L2(0,T )

= O(δ).

Proof. We define

F (β) ≡ c(x, t).

If Ψh(x, t) = F ′(β)h(t) is the first Fréchet derivative in the direction h, then Ψh ∈
D(L) and

L(β)Ψh = −(hc)t, Ψh(x, 0) = 0.

Similarly, if Φh(x, t) = F ′′(β) (h(t), h(t)) is the second Fréchet derivative in the direc-
tion h, then Φh ∈ D(L) and

L(β)Φh = −2(hΨh)t, Φh(x, 0) = 0.

By continuity of the trace operator, we have

G′(β)h(t) = Ψh(1, t) = γΨh, G′′(β) (h(t), h(t)) = Φh(1, t) = γΦh.

Thus, G is twice Fréchet differentiable.
Define p ∈ W to be the solution of

L(β)∗p = h, p(x, T ) = 0,

where the adjoint L∗ is taken with respect to L2(0, T ). Notice that

〈g,G′(β)∗h〉H1(0,T ) = 〈G′(β)g, h〉L2(0,T )

= 〈γΨg, h〉L2(0,T ) = γ〈Ψg, h〉L2(0,T )

= γ〈−L−1(gc)t, h〉L2(0,T ) = −γ〈(gc)t,
(
L−1

)∗
h〉L2(0,T )

= −γ〈(gc)t, (L∗)
−1

h〉L2(0,T ) = −γ〈(gc)t, p〉L2(0,T )

= γ〈g, cpt〉L2(0,T ),

provided that g(0) = 0. Since

〈g, v〉L2(0,T ) =
〈 (

B−1
)∗

g, v
〉
H1(0,T )

for every v ∈ H1(0, T ), it follows that

γ 〈g, (cpt)〉L2(0,T ) = γ
〈 (

B−1
)∗

g, cpt
〉
H1(0,T )

= γ
〈
g,B−1 (cpt)

〉
H1(0,T )

.

This means that

G′(β)∗h = γB−1 (cpt)

with L(β)∗p = h, p(x, T ) = 0. Since (3.10) holds, there exists w ∈ L2(0, T ) such that

β0 − β̂ = G′(β0)
∗w(3.12)

or B(β0 − β̂) = c(1, t)pt(1, t) with

L(β0)c = 0, c(x, 0) = c0(x), L(β0)∗p = w(t), p(x, T ) = 0.
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Let h := βδ
α − β0 and βs := β0 + sh. Then

∣∣∣∣∣2
〈
w,

∫ 1

0

G′′(βs)(h, h)(1 − s) ds

〉
L2(0,T )

∣∣∣∣∣
=

∣∣∣∣∣2
∫ T

0

w(t)

∫ 1

0

G′′(βs(t))(h(t), h(t))(1 − s) ds dt

∣∣∣∣∣
≤ sup

0≤s≤1

∣∣∣〈w,G′′(βs)(h, h)〉L2(0,T )

∣∣∣
= sup

0≤s≤1

∣∣∣〈γL(β0)∗p, ,G′′(βs)(h, h)
〉
L2(0,T )

∣∣∣
= ‖γp‖L2(0,T )

∥∥γL(β0)Ψh

∥∥
L2(0,T )

.

As in [8], it can be shown that there exist constants C1 and C2 such that

‖Φh‖W ≤ C1 ‖h‖L2(0,T ) ‖Ψh‖W , ‖Ψh‖W ≤ C2 ‖h‖L2(0,T ) ‖c‖W .

By the trace theorem [9, p. 258] and boundedness of the operator L(β0), there exists
C3 such that

∥∥γL(β0)Ψh

∥∥
L2(0,T )

≤ C3 ‖h‖2
H1(0,T ) ‖c‖W .

As the quantity appearing in (3.11) is ‖γp‖L2(0,T ), we deduce that

2

〈
w,

∫ 1

0

G′′(βs)(h, h)(1 − s) ds

〉
L2(0,T )

≤ ρ ‖h‖2
H1(3.13)

with ρ < 1. Since G is twice Fréchet differentiable and both (3.12) and (3.13) hold,
application of the theory of Engl, Kunisch, and Neubauer [8, Theorem 2.4] yields the
desired convergence result.

Discussion of source condition. The condition (3.10) requires that the difference

between the a priori guess β̂ and the true solution β0 must be in D(B) ⊂ H2(0, T ).
In practical applications, this regularity assumption is very restrictive.

It was established in Oppenheimer [14] for Hölder continuous β that there exist
constants C ≥ 0 and θ > 0 such that

‖c(·, t)‖L2(0,1) ≤ C
β(0)

β(t)
e−θt ‖c0‖L2(0,1) .

Since β ∈ B is bounded, there exist constants C ≥ 0 and θ > 0 such that

‖c(·, t)‖L2(0,1) ≤ Ce−θt ‖c0‖L2(0,1) .

The requirement (3.11) means that the difference between our a priori guess β̂ and
the true parameter β0 must be small and very smooth when our measurement c(1, t)
is small. This is both a local and global restriction. Since c(·, t) decays exponentially,
this is possible only for sufficiently small T .
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Fig. 4.1. Exit concentration.

4. Numerical results. In order to demonstrate the effectiveness of Tikhonov
regularization for this application, we consider two examples. Recall that the solution
of our forward problem (3.1) decays over time, i.e., c(x, t) → 0 as t → ∞. As a result,
we do not expect to be able to use all of the available data or to recover β(t) over the
whole time interval.

All computations were carried out in MATLAB. The Tikhonov functional

Jα(β) =

∫ T

0

(
c(1, t) − zδ

)2
dt + α

∫ T

0

(
β(t) − β̂(t)

)2
dt

was minimized using a Gauss–Newton method. Here zδ and β̂ represent noisy data
and an a priori guess of the parameter. During the computation of Jα(β), exit con-
centrations c(1, t) associated with a particular β were computed using an implicit
finite-difference algorithm. The integrals were computed using a trapezoidal rule.
Exit concentration data was generated using a method of lines algorithm with high
accuracy. The a priori guess was chosen to be β̂ = β(0), which was estimated using

the approximation β(0) ≈ (
∫ tN
0

c(1, t) dt)/c0. Strategies for the discussion of regular-
ization parameters are discussed in [21]. For the purposes of this discussion, we will
choose the regularization parameter to be α = 0 in the absence of noise.

Example 1. Let c0(x) = 1 and K = 0.07. Consider the sorption coefficient

β(t) = 1 + 10e−2t.

The exit concentration c(1, t) associated with this β is shown in Figure 4.1. Since
the data decays over time, we restrict the recovery of β to the time interval [0, 2.5].
An initial guess of β = 1 was used. The parameter β and its recovery βnonoise from
noiseless data are shown in Figure 4.2. Notice that quality of the recovery degrades
after t = 2. This is due to the fact that the exit concentrations become very small
and begin to amplify numerical error in the algorithm.

Example 2. Let c0(x) = 1 and K = 0.07. Consider the sorption coefficient

β(t) = 2 + cos (10t).

The exit concentration c(1, t) associated with this β is shown in Figure 4.3. Once again
the data decays over time, and we restrict the recovery of β to the time interval [0, 2].
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Fig. 4.2. βnonoise recovered from exact data.
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Fig. 4.3. Exit concentration.

An initial guess of β = 2 was used. The parameter β and its recovery βnonoise from
noiseless data are shown in Figure 4.4. Notice that quality of the recovery degrades
after t = 1.25.

Example 3: Noisy data. Since data for this problem is measured experimentally,
it will contain a certain amount of noise. The nature of these experiments suggests
that the noise level may be as much as 20%. Noise is introduced into the data from
Example 1 via a normally distributed random number generator. Figure 4.5 shows
the noisy exit concentration data.

In engineering applications, it is not practical to expect to have sufficient infor-
mation about the unknown parameter β0 in order to choose an a priori guess β̂ so
that β0 − β̂ ∈ D(B) ⊂ H2(0, T ). Hence Theorem 3.6 does not apply. Instead, a
regularization parameter of α = 10−3 was chosen heuristically by an L-curve method,
[21]. Figure 4.6 shows the recovery of βnoise with and without regularization. Clearly
α = 10−3 produces better results than α = 0, although the recovery is not as good as
the noiseless case in Example 1.
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Fig. 4.4. βnonoise recovered from exact data.
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Fig. 4.5. Exit concentration data with 20% noise.
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Fig. 4.6. βnoise recovered from noisy data without regularization and with a regularization
parameter of α = 10−3.
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5. Conclusions. In this paper, we have identified the sorption partitioning co-
efficient as a function of time from limited boundary data. A numerical approach
for approximating this time dependent parameter in a parabolic partial differential
equation has been analyzed. This work has brought insight into how a partitioning
coefficient varies with different physical factors such as temperature fluctuations and
contaminant introduction in the soil column. In the column studies, the boundary
data is represented by the measurements of contaminant concentrations as the solu-
tion exits the soil column. The identifiability of the soil sorption parameter, β, is
determined from these noisy exit concentration measurements. In order to establish
the identifiability of the parameter β, we proved the injectivity of the parameter to
the output map. We then discussed an output least squares formulation of the prob-
lem with Tikhonov regularization. Using this format, we found a minimizer to our
approximate problem and were able to prove that this minimizer converges to the
true parameter as the noise level and the regularization parameter approach zero.
Although we proved convergence, the rate of convergence may be arbitrarily slow.
Therefore, we established a source condition that guarantees a given rate of conver-
gence. However, there is a trade-off here. The condition requires that the difference
between our a priori guess and the true parameter must be small and relatively smooth
when the boundary measurements are small. We found that this in possible only over
a small time interval because the contaminant concentration decays over time. Within
the numerical examples, this is seen after t = 2 in Example 1 and after t = 1.6 in
Example 2. However, with the noisy data, the quality of the identification signifi-
cantly improves with the inclusion of a regularization parameter. Consequently, the
implementation of Tikhonov regularization provides a more tractable result.
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