
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF NEURAL ENGINEERING

J. Neural Eng. 1 (2004) 187–194 PII: S1741-2560(04)84955-3

Analysis of real-time numerical
integration methods applied to
dynamic clamp experiments
Robert J Butera1 and Maeve L McCarthy2

1 Laboratory for Neuroengineering, Georgia Institute of Technology, Atlanta, GA 30332-0535, USA
2 Department of Mathematics and Statistics, Murray State University, 6C Faculty Hall, Murray,
KY 42071-3341, USA

E-mail: rbutera@ece.gatech.edu

Received 13 August 2004
Accepted for publication 8 October 2004
Published 17 November 2004
Online at stacks.iop.org/JNE/1/187
doi:10.1088/1741-2560/1/4/001

Abstract
Real-time systems are frequently used as an experimental tool, whereby simulated models
interact in real time with neurophysiological experiments. The most demanding of these
techniques is known as the dynamic clamp, where simulated ion channel conductances are
artificially injected into a neuron via intracellular electrodes for measurement and stimulation.
Methodologies for implementing the numerical integration of the gating variables in real time
typically employ first-order numerical methods, either Euler or exponential Euler (EE). EE is
often used for rapidly integrating ion channel gating variables. We find via simulation studies
that for small time steps, both methods are comparable, but at larger time steps, EE performs
worse than Euler. We derive error bounds for both methods, and find that the error can be
characterized in terms of two ratios: time step over time constant, and voltage measurement
error over the slope factor of the steady-state activation curve of the voltage-dependent gating
variable. These ratios reliably bound the simulation error and yield results consistent with the
simulation analysis. Our bounds quantitatively illustrate how measurement error restricts the
accuracy that can be obtained by using smaller step sizes. Finally, we demonstrate that Euler
can be computed with identical computational efficiency as EE.

1. Introduction

Numerical models of excitable cell membranes, such
as neurons, routinely require the solution of gating
variables. These gating variables are normalized quantities
representing changes in nonlinear time- and voltage-dependent
conductances of ionic currents. Approximations have been
developed to speed up the computation of these gating
variables, and one of the most commonly used approximations
is known as ‘exponential Euler’ [1, 2].

These approximations are most often used in two
situations (figure 1): (1) when laboratory experiments are
coupled with real-time simulations, imposing strict temporal
constraints on how rapidly the calculations for integrating
the gating variables must occur [3–6], and (2) large-scale

simulations, for example of a network of neurons or a cable
model of a nerve fiber, which may contain thousands of gating
variables to be solved for each time step [7–12]. However,
given the widespread use of this straightforward computational
shortcut, a numerical analysis clearly defining the accuracy
of this technique has been performed only by Victorri et al
[13]. Their work quantifies the error in the method in terms
of the change in action potential during a time step, thereby
allowing for large time steps when the action potential is
changing relatively slowly. We are particularly motivated to
analyze this method in a different context—its use in real-
time simulations interacting with experiments (also known as
dynamic clamp), where there are implementation-dependent
constraints on choice of step size and a measurement error
associated with the experimental measurements.
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In this paper we present a numerical error analysis of
the exponential Euler method. The resultant error bound for
a single integration time step is formulated according to the
parameters of common generic forms of the gating variable
equations, as well as the measurement error of a neuron’s
membrane potential and the size of the time step of the
numerical integration. We contrast our results with those of the
Euler method, which is not as widely used in these applications
but is also a first-order method. We demonstrate the
applicability of the method by comparing the results of highly
accurate numerical simulation of a reference model with that
using the exponential Euler method and calculating an error
term for each time step. We conclude with a discussion of
these results in the context of the accuracy and performance
of dynamic clamp experiments.

1.1. Analysis of error in gating variables

The Hodgkin–Huxley formalism [14] represents the ionic
currents in a membrane equation as a maximal conductance
multiplied by one or more voltage-dependent gating variables
multiplied by a voltage drive, as follows:

I = ḡ
∏

i

x
pi

i (V − E)

where ḡ, E are known and the gating variables xi are raised to
integer powers pi . The gating variables are solved according
to

dx

dt
= x∞(V )

τ(V )
− x

τ(V )
(1)

where the functions x∞(V ) and τ(V ) depend on the voltage V .
For our particular application (figure 1(A)), the voltage V is an
experimental measurement which is subject to error. Since the
gating variables are normalized, they satisfy 0 � X(t) � 1.

Suppose we discretize time 0 < t0 < t1 < t2 · · · tN = T

with �t = tk − tk−1 = T/N for all k. For the gating variables
and voltages, capital letters represent actual values while lower
case letters represent measured values and computed values.
In particular, let Xk represent the analytic solution of the
differential equation using the actual voltage Vk at time t = tk,

and let xk represent the numerical solution of the differential
equation using the measured voltage vk at time t = tk. We
define the error associated with each gating variable at time
t = tk as the difference between the actual value of the gating
variable and the computed value of the gating variable

ek = Xk − xk.

We seek a bound on |ek+1| in terms of |ek| of the form

|ek+1| � K|ek| + L, K = 1 + A�t

because it leads to a bound of the form

|ek| � (eA(�t)k − 1)L

A�t
. (2)

See [15], lemma 1.1.

Figure 1. Two common applications that utilize the exponential
Euler method for the integration of ionic conductance gating
variables. (A) Real-time simulations coupled with experiments,
where there is a fixed limit on real computation time per integrator
time step. (B) Large-scale computer simulations of nervous or
muscle tissue, comprising thousands of individual cellular models,
where it is desired to compute each gating variable as rapidly as
possible due to the sheer number of computations per time step.

We make the following assumptions:

• The experimental error in the measurement of voltage at
t = tk is bounded, i.e.,

|Vk − vk| < δ. (3)

• The functions x∞(U)/τ(U) and 1/τ(U) are Lipschitz
continuous and so∣∣∣∣x∞(U)

τ(U)
− x∞(V )

τ(V )

∣∣∣∣ +

∣∣∣∣ 1

τ(U)
− 1

τ(V )

∣∣∣∣ < γ |U − V |.
(4)

• The computed gating variables satisfy

0 � xk � 1. (5)

• The gating variable voltage-dependent time-constants are
assumed to be positive and satisfy

1

τ(V )
� 1

τmin
. (6)

1.1.1. Error analysis for exponential Euler method. The
exponential Euler method defines the numerical solution of
(1) at time tk+1 as

xk+1 = xk + (1 − e−�t/τ(vk))(x∞(vk) − xk). (7)
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The Taylor series of e−x implies that

e−�t/τ(vk) = 1 − �t

τ(vk)
− e−η(�t)2

2τ(vk)2
0 < η < �t/τ(vk)

(8)

which means that

xk+1 = xk +

(
�t

τ(vk)
+

e−η(�t)2

2τ(vk)2

)
(x∞(vk) − xk). (9)

Also by Taylor’s theorem, the analytic solution of (1) satisfies

Xk+1 = Xk + �tẊ(Vk) +
(�t)2

2
Ẍ(V (ξk)),

tk < ξk < tk+1, (10)

where Ẋ, Ẍ represent the first and second temporal derivatives,
respectively. Using gating equation (1), this can be written as

Xk+1 = Xk + �t

(
x∞(Vk) − Xk

τ(Vk)

)
+

(�t)2

2
Ẍ(V (ξk)). (11)

Subtract (9) from (11) and group terms to obtain

ek+1 = ek + �t

[(
x∞(Vk) − Xk

τ(Vk)

)
−

(
x∞(vk) − xk

τ (vk)

)]

+
(�t)2

2

[
Ẍ(V (ξk)) − e−η

τ (vk)

(
x∞(vk) − xk

τ (vk)

)]
(12)

where ek = Xk − xk.

First, consider the second term of (12). By adding and
subtracting Xk/τ(vk), we find that∣∣∣∣x∞(Vk) − Xk

τ(Vk)
− x∞(vk) − xk

τ (vk)

∣∣∣∣ �
∣∣∣∣x∞(Vk)

τ (Vk)
− x∞(vk)

τ (vk)

∣∣∣∣
+ |Xk|

∣∣∣∣ 1

τ(vk)
− 1

τ(Vk)

∣∣∣∣ +
|Xk − xk|

τ(vk)
. (13)

From assumptions (3) through (6) it follows that∣∣∣∣x∞(Vk) − Xk

τ(Vk)
− x∞(vk) − xk

τ (vk)

∣∣∣∣ � γ δ +
|ek|
τmin

. (14)

Next, consider the third term of (12). Since e−η � e0 = 1,

we find that∣∣∣∣Ẍ(V (ξk)) − e−η

τ (vk)

(
x∞(vk) − xk

τ (vk)

)∣∣∣∣
� |Ẍ(V (ξk))| +

∣∣∣∣xk − x∞(vk)

τ 2(vk)

∣∣∣∣ . (15)

Under the assumption that dV/dt �= 0, differentiation of
(1) yields

Ẍ(V ) = x ′
∞(V )V̇

τ (V )
+

(X − x∞(V ))

τ 2(V )
(1 + τ ′(V )V̇ ). (16)

where ′ denotes derivatives with respect to voltage.
Since 0 � X(V ) � 1, and 0 � x∞(V ) � 1, it follows

that |X(V ) − x∞(V )| � 1. Similarly, |xk − x∞(vk)| � 1.

Therefore∣∣∣∣Ẍ(V (ξk)) − e−η

τ (vk)

(
x∞(vk) − xk

τ (vk)

)∣∣∣∣ � |x ′
∞(V (ξk))V̇ (ξk)|

τmin

+
|1 + τ ′(V (ξk))V̇ (ξk)|

τ 2
min

+
1

τ 2
min

. (17)

Using these bounds in (12), the bound for the error in the
gating variables becomes

|ek+1| �
[

1 +
�t

τmin

]
|ek| + �tγ δ

+
(�t)2

2τ 2
min

(τmin|x ′
∞(V (ξk))V̇ (ξk)|

+ |1 + τ ′(V (ξk))V̇ (ξk)| + 1). (18)

Application of Gear’s lemma [15] to (18) yields

|ek| �
(
e

k�t
τmin − 1

) ·
(

γ δτmin

+
�t(τmin|x ′

∞(V (ξk))V̇ (ξk)| + |1 + τ ′(V (ξk))V̇ (ξk)| + 1)

2τmin

)
.

(19)

Note that, if V̇ (ξk) = 0, this becomes

|ek| �
(
e

k�t
τmin − 1

) (
γ δτmin +

�t

τmin

)
. (20)

1.1.2. Error analysis for the Euler method. The Euler
method defines the numerical solution of (1) at time tk+1 to
be

xk+1 = xk + �t

(
x∞(vk) − xk

τ (vk)

)
. (21)

Subtract (21) from (11) to obtain

ek+1 = ek + �t

(
x∞(Vk) − Xk

τ(Vk)
− x∞(vk) − xk

τ (vk)

)

+
(�t)2

2
Ẍ(V (ξk)). (22)

Using an identical analysis, we find that

|ek+1| = |ek|
[

1 +
�t

τmin

]
+ �tγ δ +

(�t)2

2τ 2
min

× (τmin|x ′
∞(V (ξk))V̇ (ξk)| + |1 + τ ′(V (ξk))V̇ (ξk)|). (23)

Applying Gear’s lemma [15], we find

|ek| �
(
e

k�t
τmin − 1

)

×
(

γ δτmin +
�t(τmin|x ′

∞(ξk)ξ
′
k| + |1 + τ ′(ξk)ξ

′
k|)

2τmin

)
.

(24)

Note that if V̇ (ξk) = 0 this becomes

|ek| �
(
e

k�t
τmin − 1

) (
γ δτmin +

�t

2τmin

)
. (25)

Convergence Analysis. Note that neither the exponential Euler
nor the Euler method converges in a linear manner in the
presence of measurement error. When we use k = N, we see
that both methods have global error bounds of the form

|eN | � C1δ + C2�t, (26)

albeit with slightly different constants. Each method is
globally linear in the absence of measurement error δ. Locally,
however, when k = 1, these methods are quadratic when �t/τ

is small. It is their local behavior that is of particular interest
to us because of its implications in a real-time context.
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2. Model description

For our case study, we will consider a modified version of the
model of [16], a relatively simple neuron model that can elicit
periodic firing of action potentials (spiking) as well as periodic
bursts of action potentials (bursting). This model is used as
published, with the following modifications:

(i) A gating variable m is used in the equation for INa, as
opposed to an instantaneous function of V ; and

(ii) The voltage-dependent time-constants are replaced
by constants (not voltage-dependent) to simplify our
analysis.

This model consists of four ionic currents: INa is a Hodgkin–
Huxley style fast sodium current. It has a fast voltage-
dependent activation gating variable (m), and inactivation is
represented by the approximation 1 − n [17, 18]. IK is
a Hodgkin–Huxley style fast potassium current. It has a
moderately fast voltage-dependent activation gating variable
n. INaP is a persistent sodium current with slow inactivation.
It has an instantaneous function of voltage for an activation
term and has a slow voltage-dependent gating variable h (not
to be confused with the traditional h of the Hodgkin–Huxley
equations, which was replaced by 1 − n in INa). IL is a linear
leakage current.

A complete set of model equations is given in the
appendix. Parameters are as published except for the
modifications previously noted, and for the time-constants
we utilized τm = 0.1 ms, τn = 10 ms, and τh = 10 000 ms.
We utilized stimulus current values (Istim) of 14 pA and 18 pA;
these two values correspond to periodic solutions of bursting
and spiking, respectively. We refer to these in this manuscript
as the bursting and spiking parameter values.

This bursting model was chosen for four reasons: it
is relatively simple for a membrane model and thus more
amenable to analysis, it is capable of a wide range of
dynamic behaviors (both bursting and spiking), it contains
time-constants that vary over six orders of magnitude, which
will provide multiple time-scales in one model to evaluate our
methods with, and these time-scales span ideal and non-ideal
cases with regard to the relative values of the time-scales versus
the computational time step used.

3. Results

Assume for each of the gating variables that τ is independent
of voltage V, i.e., it is constant, and the voltage-dependent
functions are of the form

τ(V ) = τ, x∞(V ) = (1 + e(V −θ)/d)−1,

x∞(V )

τ(V )
= 1

(1 + e(V −θ)/d)τ

x ′
∞(V ) = −e(V −θ)/d

d(1 + e(V −θ)/d)2
= −1

d(e−(V −θ)/2d + e(V −θ)/2d)2

= −1

4d cosh2((V − θ)/d)
.

Apply the mean value theorem∣∣∣∣x∞(U)

τ(U)
− x∞(V )

τ(V )

∣∣∣∣ =
∣∣∣∣
(

x∞(W)

τ(W)

)′∣∣∣∣ |U − V | � |U − V |
4τ |d|

(27)

for some W in (U, V ):∣∣∣∣ 1

τ(U)
− 1

τ(V )

∣∣∣∣ =
∣∣∣∣ 1

τ
− 1

τ

∣∣∣∣ = 0.

Thus we can identify

γ = 1

4τ |d| , τmin = τ, |x ′
∞| � 1

4|d| , τ ′ = 0.

Assuming in both cases that V̇ (ξk) = 0, we are most
interested in one-step (local) error bounds where k = 1. This
results in the following bounds for exponential Euler and Euler,
respectively:

|e|exEuler �
(
e

�t
τ − 1

) (
δ

4|d| +
�t

τ

)
(28)

|e|Euler �
(
e

�t
τ − 1

) (
δ

4|d| +
�t

2τ

)
. (29)

The values used for τ and d are obtained directly from
the model parameters. The measurement error, δ, represents
two sources of uncertainty. First is the actual error in the
measurement of membrane voltage during an experiment;
for these reference simulations using a deterministic model,
we can assume that this error is zero. However, a second
source of measurement error is the fact that both of these
numerical methods are explicit, and the dynamical equations
for the gating variables are dependent on V and assume that
the temporal change in V is insignificant over a single time
step. In fact, this assumption is implicit in the development
of the exponential Euler method. Figure 2 illustrates |�V |
versus time for repetitively firing action potentials with a
time-step of 0.1 ms (corresponding to a computational rate of
10 kHz, a commonly used rate in dynamic clamp experiments).
A bound of 0.7 mV (dashed line) sufficiently bounds |�V |
for the entire action potential cycle except during the rapid
upstroke of the action potential. While this bound could be
made larger (and result in a larger value for δ), it will be shown
later that choosing δ = 0.7 mV provides values of δ that yield
error bounds that are sufficient, and a more liberable bound is
both unnecessary and less informative.

3.1. Local error analysis

For our reference simulations, we performed a local or one-step
error analysis. This consisted of performing a highly accurate
numerical simulations for both the bursting and spiking
models. These simulations used the CVODE numerical
integration method [19] for stiff systems. For these reference
simulations, the absolute and relative error tolerances
were set to 10−5 and output was recorded every 0.1 ms
(although the adaptive step size used may be significantly
small or larger than this). These and all subsequent simulations
were implemented using the dynamical systems environment
XPPAUT [20] unless otherwise noted.
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Exponential Euler in real-time

Figure 2. V and |�V | versus time for a time step of 0.1 ms for
stable repetitively firing action potentials using the reference model
with Iapp = 18 pA. The y-axis is a log scale. Dashed line is for
|�V | = 0.7 mV.

Recall that a local error is the error after one time step
of integration. This form of error is especially appropriate
for analysis of real-time experimental control systems
(figure 1(A)), where the integration of the gating variables
is dependent on a new measurement made during each
computational cycle. We utilized a step-size (�t) of 0.1 ms
for two reasons: this step size corresponds to a periodic
computational rate of 10 kHz, commonly used in dynamical
clamp experiments, and this step size will highlight the relative
effects of τ on the accurate computation of the trajectory of
the gating variables.

Local error was calculated by using the values of each
state vector at each timepoint in the reference simulations as an
initial condition, and then performing one step of either Euler
or exponential Euler integration. The results of this integration
were then subtracted from the next state vector in the reference
simulation to obtain an error term. These one-step errors were
calculated for parameter values corresponding to bursting and
spiking dynamics, and these errors were also compared to the
error bound computed for the Euler and exponential Euler
integration of the gating variables according to equations (28)
and (29). To compute these error bounds, �t was 0.1 ms, δ

was 0.7 mV (figure 2), and value for k and τ were obtained
from the reference model.

Figure 3 illustrates bursting and spiking dynamics, and
corresponding changes in membrane potential (V ) and the
gating variable h. This gating variable has an extremely
slow time constant. During spiking, changes in h are almost
negligible. In both dynamic modes, the one-step error for
both Euler and exponential Euler are indistinguishable on the
graph. The predicted error bounds are also nearly identical
and the one-step error in h is well below these bounds. This
is hardly surprising, given how slow the time constant of h
is related to step size. For this reason, the remainder of our
analysis focuses on the dynamics of the faster gating variables
m and n that underlie spiking.

The time courses of the faster gating variables m (τ =
0.1 ms) and n (τ = 10 ms) during the repetitive firing of
an action potential (spiking) are illustrated in figure 4. The
remaining panels of figure 4 illustrate the one-step error and
predicted error bounds for both gating variables using both
numerical methods. When examining the dynamics of n, the

Figure 3. Comparison of bursting and spiking dynamics.
Simulations shown for one or more periods of oscillation of the
model in parameter regimes corresponding to bursting (left) and
spiking (right). Panels illustrate (top to bottom) membrane
potential, time course of h gating variable, and one-step error of h
gating variable (solid—Euler, dashed—exponential Euler). The
one-step errors are indistinguishable in this case. Horizontal lines in
bottom panel illustrated predicted error bound (solid and dotted,
indistinguishable).

Figure 4. Spiking dynamics and one-step error of fast gating
variables. Same simulation as the right panel of figure 3, zoomed on
a 200 ms window about the first spike. Top panel illustrates changes
in V (solid line) and gating variables m and n (dashed lines). Middle
and bottom panels illustrate one-step error in n and m, respectively.
Each of the error panels plots the error for both the Euler and
exponential Euler method, and horizontal lines indicate predicted
error bounds.

error bounds were similar. The exponential Euler method has
less error than the Euler method at the maximal and minimal
points of the action potential, since this is where the critical
assumption of this method, V̇ = 0, is most valid. More
significantly, however, is the fact that the peak error for both
methods was similar and occured during the maximal changes
of V on the upstroke and downstroke of the action potential.
The one-step error for m was quite different when comparing
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Figure 5. Magnitude of predicted error for Euler and exponential
Euler as a function of the ratios δ/|d| and �t/τ . Curves are
parametrized by δ/|d| = 10−5, 10−3, 10−1 and 10. Triangles
represent corresponding error bounds using model parameters for
h, n and m (left to right).

the two methods. It should be noted that the dynamics of
m are a ‘worst case’ scenario: τ is 0.1 ms, the same as the
computational step size. In this case, the one-step error using
the exponential Euler method was significantly worse than
that using the Euler method. For both m and n, the predicted
error bounds did a reasonable job identifying the limits of the
one-step error.

3.2. Relationship between measurement error and time step

Examining equations (28) and (29), it is clear that the error
bound scales with two ratios: δ/|d| and �t/τ . The first
is a ratio of the voltage-measurement error divided by the
slope factor of the gating variable in question, the second is
the ratio of the time step to the time constant of the gating
variable. Figure 5 illustrates a plot of these error bounds as
a function of �t/τ for different values of δ/|d|. Clearly two
slopes are evident: one when �t/τ < δ/|d|, and another when
�t/τ > δ/|d|. It is apparent that when �t/τ is large relative
to δ/|d|, no amount of improvement in measurement error can
improve the error bound due to the numerical inaccuracies
caused by a relatively large time step. Conversely, if �t/τ is
small relative to δ/|d|, an order of magnitude improvement in
δ results in a similar order of magnitude in the error bound.
In practice, the voltage-measurement error δ contributes more
significantly to the error in the computation than the numerical
error associated with the step size �t.

A natural question to consider is the following: in the
presence of experimental error δ, how small does the step
size �t need to be in order to guarantee that the error in
the gating variable is at an acceptable level? This can be
computed by bounding the right hand sides of equations
(28) and (29) by an acceptable error level A and solving the
resulting nonlinear inequalities. Note that when �t/τ � 1,

we can use e
k�t
τ − 1 ≈ �t/τ and the inequalities become

�t

τ

(
δ

4|d| +
�t

τ

)
� AexEuler

�t

τ

(
δ

4|d| +
�t

2τ

)
� AEuler

giving upper bounds of

�t � τ

8|d|
(−δ +

√
δ2 + 64|d|AexEuler

)
and

�t � τ

16|d|
(−δ +

√
δ2 + 32|d|AEuler

)
for our step size �t.

Over more than one integration step, local errors can
accumulate and contribute to a global error of the form given
by equations (20) and (25). For our simulation, the global
error has the form

|e|exEuler �
(
e

N�t
τ − 1

) (
δ

4|d| +
�t

τ

)

|e|Euler �
(
e

N�t
τ − 1

) (
δ

4|d| +
�t

2τ

)

where N is the number of time steps taken. Since N�t = T ,

if we choose �t so that

(
e

T
τ − 1

) (
δ

4|d| +
�t

τ

)
� AexEuler

(
e

T
τ − 1

) (
δ

4|d| +
�t

2τ

)
� AEuler

we can guarantee that the global error is below a certain level
for a dynamic clamp experiment that lasts T s. However, we
believe that this consideration of global error is unnecessary
and/or impractical for several reasons. First, the global error
is absolute, and accumulates every time step without bound.
However, the neural systems studied by a dynamic clamp are
typically oscillatory (resulting in positive and negative error)
and the differential equations formulating the gating variables
typically bound the dynamics between 0 and 1. Both of these
factors make it unlikely in practice that error would grow
without bound. Second, we have found that even in worst-
case scenarios, the global error at a given time step is typically
an order of magnitude or more larger than the actual computed
error. Third, even if global error was a significant concern, the
process outlined above using physiological constants would
likely result in values for �t that are significantly smaller than
can be practically implemented by real-time systems.

3.3. Methods for real-time implementation

It has previously been noted by several authors [4, 5] that a
primary motivation of using the exponential Euler method in
real-time methods is its rapid calculation. When modeling a
voltage-dependent gating variable x with a voltage-dependent
time constant and activation curve, through the use of lookup
tables as a function of the digitized measured voltage it is
possible to reduce the integration of a gating variable to two
table lookups and a single multiple and single add operation:

x∗ = F1(V ) (30)

x+ = F2(V ) (31)

where F1(V ) and F2(V ) are functions implemented by
voltage-dependent lookup tables. It is possible to implement
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Table 1. Table lookup implementation for Euler and exponential
Euler methods when using a one-step multiply-add update.

F1(V ) F2(V )

Euler 1 − �t

τ(V )

�t

τ(V )
x∞(V )

Exponential Euler e− �t
τ(V ) x∞(V )

(
1 − e− �t

τ(V )
)

both Euler and exponential Euler in this way, thus speed of
implementation is no rationale for choosing one method over
another. Table 1 lists the functional implemetation of F1(V )

and F2(V ) for both methods.

4. Discussion

In this paper we have developed a local error analysis of the
Euler and exponential Euler methods applied to the numerical
integration of voltage-dependent gating variables. Our
approach was motivated by the ‘dynamic clamp’ application,
where the voltages driving the gating variables are subject
to measurement error. We showed that both the Euler and
exponential Euler methods perform comparably when �t < τ .
In practice, investigators prefer that �t/τ is 0.1 or smaller
to maintain numerical accuracy in real-time simulations.
However, sometimes investigators are forced to violate this
practice due to the computational complexity of their real-time
model. In these non-ideal cases, the Euler method performed
better. The conclusions of our numerical tests are consistent
with the error bounds established in this paper. When �t/τ is
small, the error bound is similar for both methods, but when
�t/τ is large, exponential Euler has a lower local error bound.

We further derived analytical formulae using the error
bounds whereby, for a known voltage measurement error
δ and desired one-step integration accuracy A, one can
compute the time step necessary to achieve the desired
accuracy. This is of utility as a guide to choosing the
computational cycle duration for a real-time system interacting
with neurophysiological experiments, and we intend to
incorporate it into the next version of our own real-time system
for electrophysiological experiments, MRCI [6], available
online at http://www.neuro.gatech.edu/mrci/.

Most approaches to numerical analysis of differential
equations consider the order of a method from a global
perspective. If one makes the assumption that �t � τ , the
exponential Euler method reduces to the Euler method. Such
observations may lead to the impression that exponential Euler
is more accurate. However, as our local error bounds illustrate,
such assumptions of improved accuracy are misleading.

To our knowledge, this study is the first to consider the
numerical methods used to integrate gating variables in real
time, considering the perspectives of voltage measurement
error and the constraints upon �t . Unlike traditional model
simulations, with real-time systems it is not practical to make
�t smaller and simply wait longer for the simulation result.
However, much work still needs to be done to investigate the
question of to what extent, given voltage measurement error,
it is useful to implement higher-order numerical methods in a
real-time system interacting with experiments. The improved

accuracy of such methods would have to be evaluated not only
in light of voltage measurement error, but also to consider that
the use of higher-order methods requires greater computational
resources and thus increases the minimal value of �t that is
feasible.
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Appendix. Model equations

The reference model for performance analysis is a Hodgkin–
Huxley [14] style model. It is a minimal model for oscillatory
bursting [16] exhibited by respiratory pacemaker neurons in
the pre-Bötzinger complex of the mammalian ventrolateral
medulla [21, 22]. For this particular paper, time constants were
simplified to be non-voltage dependent, and the activation of
INa has been modified to be noninstantaneous and activated by
the gating variable m. Not counting membrane voltage (which
is integrated by the model neuron), this model consists of three
state variables (m, n, h) and four ionic currents. The model
equations are described as follows:

ṁ = (m∞(V ) − m)/τm (32)

ṅ = (n∞(V ) − n)/τn (33)

ḣ = (h∞(V ) − n)/τh (34)

IK = ḡKn4(V − EK) (35)

INa = ḡNam
3
∞(V )(1 − n)(V − ENa) (36)

INaPh = ḡNaPhp∞(V )h(V − ENa) (37)

IL = ḡL(V − EL) (38)

Im = INa + IK + INaPh + IL − Istim (39)

where V is the measured membrane potential and Istim is
an applied stimulus current parameter. Im is the total
transmembrane current. The voltage-dependent steady-state
activation functions (n∞(V ), h∞(V ),m∞(V ), p∞(V )) are of
the form x∞(V ) = 1/(1 + exp((V − θx)/dx)).

Gating variable parameters are specified in table 2.
Additional parameters are as follows: ḡNa = 28 nS, ḡK =
11.2 nS, ḡNaP = 2.8 nS, ḡL = 2.8 nS, ENa = 50 mV,
EK = −85 mV, EL = −65 mV. For reference simulations

Table 2. Parameters for gating variable differential equations.

Variable x θx (mV) dx (mV) τx (ms)

m −34 −5 0.1
n −29 −4 10.0
h −48 6 10 000
p −40 −6 NA
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where voltage was integrated along with the gating variables,
dV
dt

= − Im

Cm
, where Cm = 28 pF.
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