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ABSTRACT

Uniqueness of and numerical techniques for the inverse Sturm-Liouville problem

with eigenparameter dependent boundary conditions will be discussed. We will

use a Gel’fand-Levitan technique to show that the potential q in

� u00 þ qu ¼ �u, 0 < x < 1

uð0Þ ¼ 0,

ða�þ bÞuð1Þ ¼ ðc�þ d Þu0ð1Þ

can be uniquely determined using spectral data. In the presence of finite spectral

data, q can be reconstructed using a successive approximation method that

involves solving a hyperbolic boundary value problem that arises in the the

Gel’fand-Levitan analysis. We also consider a shooting method where the right

endpoint boundary condition is used in conjunction with a quasi-Newton scheme

to recover the unknown potential, q.
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I. INTRODUCTION

The direct eigenparameter dependent problem under consideration involves
solving the differential equation

�u00 þ qu ¼ �u, 0 < x < 1 ð1Þ

subject to boundary conditions

uð0Þ ¼ 0 ð2Þ

ða�þ bÞuð1Þ ¼ ðc�þ d Þu0ð1Þ ð3Þ

with � ¼ ad � bc > 0:
An essential difference between the regular Sturm-Liouville problem and the

eigenparameter dependent one is that the latter may have one more eigenvalue
than the former. For the regular problem, the eigenvalues are solutions of a trans-
cendental equation of the form

cot �ð�, 1Þ ¼ C

where �ð�, xÞ is the Prüfer angle and C is a constant depending on the boundary
conditions at the right end-point. Each branch of the graph of cotangent yields
precisely one eigenvalue. When the boundary conditions contain the eigenvalue as
in Eq. (3) the transcendental has the form

cot �ð�, 1Þ ¼
a�þ b

c�þ d
:

One of the branches of the graph of cotangent yields two eigenvalues while the others
yield one. This extra eigenvalue impacts the asymptotics (c.f. Appendix).

The appearance of the eigenvalue in the boundary condition also causes the
Sturm-Liouville operator to lose its self-adjointness in L2

½0, 1�: In fact, the eigenfunc-
tions do not form a basis in L2

½0, 1� unless one of the eigenfunctions is removed from
the set. It is possible, however, to introduce an associated operator in L2

½0, 1� 	 C

that is self-adjoint. The analysis of the applications, completeness, and expansion
theory of the regular direct problem is found in the work of Walter (1973) and
Fulton (1977). Binding et al. (1993) present asymptotic, oscillation, and comparison
results.

Uniqueness results for the inverse spectral problem for Sturm-Liouville equa-
tions of this type have been studied recently by Browne and Sleeman (1996, 1997),
and by Binding et al. (2000). In (Browne and Sleeman, 1996) Browne and Sleeman
discuss uniqueness for nodal spectral data. In Browne and Sleeman (1997), they
establish uniqueness when p ¼ r ¼ 1, given one spectrum and a sequence of norming
constants. A more general result is that of Binding et al. (2000), which establishes
uniqueness results for the cases when (i) two spectra are prescribed, (ii) one spectrum
and a sequence of norming constants are prescribed, and (iii) one spectrum with even
p, q, r are prescribed. Case (ii) is addressed again in Binding et al. (2002), where
Binding et al. construct a mapping from the eigenparameter dependent Sturm-
Liouville problem to the regular Sturm-Liouville and apply the known results for
the inverse Sturm-Liouville problem.
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We reconsider here, the inverse problem where two spectra are prescribed. More
precisely, we seek to recover the unknown potential q 2 L2

ð0, 1Þ from two sequences
of eigenvalues f�ing

1
n¼1 and their associated boundary condition constants ai, bi, ci, di,

for i ¼ 1, 2 where

�u00 þ qu ¼ �1nu, uð0Þ ¼ 0, ða1�
1
n þ b1Þuð1Þ ¼ ðc1�

1
n þ d1Þu

0
ð1Þ ð4Þ

� u00 þ qu ¼ �2nu, uð0Þ ¼ 0, ða2�
2
n þ b2Þuð1Þ ¼ ðc2�

2
n þ d2Þu

0
ð1Þ: ð5Þ

Although previous results establish uniqueness, they do not provide constructive
algorithms for the solution of the eigenparameter dependent problem. In practice,
one cannot measure an infinite spectrum experimentally. However, given a finite set
of spectral data, of size N, we expect to be able to recover a potential qN , that gives
rise to the same set of spectral data when the direct problem is solved.

In Sec. II, we provide a proof of uniqueness based on a Gel’fand-Levitan argu-
ment. We develop two algorithms for the reconstruction of q based on finite data in
Secs. III and IV. Our first algorithm is based on the conversion of the spectral inverse
problem into an overdetermined boundary value problem for a hyperbolic operator
which can be solved iteratively. This approach is based on the work of Rundell and
Sacks (1992). Our second algorithm is based on the combination of techniques from
differential equations and finite-dimensional optimization. Using a shooting-
method, the solution of an appropriate initial value problem is forced to satisfy
the right endpoint boundary condition and a quasi-Newton scheme to recover the
unknown potential q: This is an extension of the work of Lowe et al. (1992). Finally,
we present a discussion of the implementation and results of both algorithms
in Sec. V.

II. UNIQUENESS OF THE INVERSE PROBLEM

We use a Gel’fand-Levitan approach to establish uniqueness of the inverse
problem. For a given value of � let uðx; q, �Þ represent the solution to the initial
value problem

Lqu :¼ �u00 þ qðxÞu ¼ �u, uð0Þ ¼ 0, u0ð0Þ ¼ 1 ð6Þ

For f 2 L2
½0, 1� and z complex, we define the eigenfunction transform of f by

Sq½ f �ðzÞ :¼

Z 1

0

f ðtÞuðt; q; zÞ dt:

This operator has the following properties:

Lemma II.1. For f 2 L2
½0, 1�, Sq½ f �ðzÞ is analytic of order 1=2 in z. Sq½ f �ðzÞ ¼ 0 for all

real z implies that f ¼ 0 a.e., and limx!1 Sq½ f �ðxÞ ¼ 0.

Proof. This follows from some well-known properties of the solution uðx; q; zÞ. First,
from Pöschel and Trubowtiz (1987, p. 13), uðx; q; zÞ is an analytic function of order
1=2, and so by Levin (1980, p. 387–388) the same is true of Sq½ f �: Second, ifR 1
0 f ðtÞuðt; q; zÞ dt ¼ 0 then, in particular,

R 1
0 f ðtÞuðt; q;�nÞ dt ¼ 0 when �n are the
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Dirichlet eigenvalues of the operator L, that is, when z ¼ �n and uð1; q;�nÞ ¼ 0.
However, fuðt; q;�nÞg

1
n¼1 is a complete basis in L2

½0, 1� and so it follows that f ¼ 0.
The final statement follows from the asymptotic formula for uðt; q; zÞ

uðt; q; zÞ ¼
sin zt

z
þO

e=ðzÞt

z

 !
ð7Þ

and the fact that fuðt; q;�nÞg is a basis with norm uniformly bounded in n. œ

For real ai, bi, ci, di, we define

�iðzÞ ¼
aizþ bi
cizþ di

i ¼ 1, 2: ð8Þ

so that the right hand boundary conditions of Eqs. (4) and (5) can be written in the
equivalent form

u0ð1; q; �Þ ¼ �ið�Þuð1; q; �Þ: ð9Þ

In order to ensure that we are providing new information from the second eigenvalue
sequence we will require that the coefficients in the meromorphic functions �i satisfy

a1 a2
c1 c2

����
���� 6¼ 0 or

b1 b2
d1 d2

����
���� 6¼ 0: ð10Þ

Note that this condition for uniqueness is weaker than the one given by Binding et al.
(2000), namely:

a1�þ b1 c1�þ d1
a2�þ b2 c2�þ d2

����
���� 6¼ 0 for all � 2 R:

We denote by f�ing
1
n¼1 the eigenvalues of the Sturm-Liouville problem (6) subject to

the boundary condition (9) for i ¼ 1, 2.
Recall the Gel’fand-Levitan representation,

uðx; q2, �Þ ¼ uðx; q1, �Þ þ

Z x
0

Kðx, t; q1, q2Þuðt; q1, �Þ dt ð11Þ

where Kðx, t; q1, q2Þ satisfies the usual hyperbolic initial value problem and is
independent of the parameter �,

Ktt � Kxx þ ½q2ðxÞ � q1ðtÞ�K ¼ 0, 0 < t < x < 1

Kðx, 0Þ ¼ 0, Kðx, x; q1, q2Þ ¼
1

2

Z x
0

½q2ðsÞ � q1ðsÞ� ds:
ð12Þ

The following lemma is proven by Rundell and Sacks, (1992, §6]:

Lemma II.2. If q1 and q2 are in L
2
½0, 1� and if the associated functions Kðx, t; q1, q2Þ

satisfy Kð1, t; q1, q2Þ ¼ 0 and Kxð1, t; q1, q2Þ ¼ 0, then q1 ¼ q2.

For the sake of brevity, we suppress the dependence on q1 and q2 in K : Applying
Eq. (9), the boundary condition at x ¼ 1, to the representation (11) with two
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potentials q1 and q2 gives

Kð1, 1Þuð1, q1; �Þ þ

Z 1

0

Kxð1, tÞ � �ið�ÞKð1, tÞ½ �uðt, q1; �Þ dt ¼ 0 ð13Þ

for each eigenvalue �. In fact, � is an eigenvalue precisely when this equation holds.
For z ¼ �in we rewrite this as

Kð1, 1Þuð1; q1; zÞ þ

Z 1

0

½Kxð1, tÞ � �iðzÞKð1, tÞ�uðt; q1; zÞ dt ¼ 0: ð14Þ

Multiplying through by
ffiffiffi
z

p
, using the asymptotic form for uðt; q; zÞ in Eq. (7), and

applying Lemma II.1, shows that the term involving the integral goes to zero as
z! 1 for z real, but the first term does not. This implies that Kð1, 1Þ ¼
ð1=2Þ

R 1
0 ½q2ðsÞ � q1ðsÞ� ds ¼ 0 and so the mean values of q1 and q2 must be the

same. HenceZ 1

0

½Kxð1, tÞ � �ið�
i
nÞKð1, tÞ�uðt; q1; �

i
nÞ dt ¼ 0: ð15Þ

Set

�iðzÞ ¼ ðcizþ diÞSq1 ½Kxð1, tÞ�ðzÞ � ðaizþ biÞSq1 ½Kð1, tÞ�ðzÞ: ð16Þ

By Lemma II.1, Sq1 ½Kxð1, tÞ�ðzÞ and Sq1 ½Kð1, tÞ�ðzÞ are analytic functions of order 1=2:
Since the order of a product of analytic functions is the largest of the orders of the
factors, c.f. Levin (1980, p. 22], this same property is also inherited by �iðzÞ. Now for
each of i ¼ 1, 2, the eigenvalue sequence z ¼ f�ing

1
n¼1 forms the zeroes of �iðzÞ and

so from Eq. (15) it follows that both �1ðzÞ and �2ðzÞ must be identically zero. This
leads to the pair of equations

Sq1 ½Kxð1, tÞ�ðzÞ þ �1ðzÞSq1 ½Kð1, tÞ�ðzÞ ¼ 0 ð17Þ

Sq1 ½Kxð1, tÞ�ðzÞ þ �2ðzÞSq1 ½Kð1, tÞ�ðzÞ ¼ 0: ð18Þ

By Eq. (10), the functions �1ðzÞ and �2ðzÞ are not identically equal and it follows
that the analytic functions Sq1 ½Kð1, tÞ�ðzÞ and Sq1 ½Kxð1, tÞ�ðzÞ must be identically zero.
It follows from Lemma II.1 that Kð1, tÞ and Kxð1, tÞ must also be identically zero.
Putting all this together, we have thus shown that if Eq. (10) holds then Kð1, tÞ ¼ 0
and Kxð1, tÞ ¼ 0. Lemma II.2 then implies that q1 ¼ q2. We have proven

Theorem II.1. If the boundary coefficients satisfy the relation

a1 a2
c1 c2

����
���� 6¼ 0 or

b1 b2
d1 d2

����
���� 6¼ 0

and if Lq1 and Lq2 each have the same spectra corresponding to the boundary conditions

ðai�þ biÞuð1Þ ¼ ðci�þ diÞu
0
ð1Þ, aidi � bici > 0, i ¼ 1, 2,

then q1 ¼ q2.

Remark 1. The particular bilinear form (8) of the functions �iðzÞ is not critical for this
result and a more general boundary dependence on � in Eq. (8) and (9) is clearly
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possible. This would include a fractional polynomial form with a corresponding
condition on nontriviality between �1ðzÞ and �2ðzÞ.

III. GEL’FAND-LEVITAN ALGORITHM

The uniqueness proof provides a basis for a constructive algorithm similar
in nature to that of Rundell and Sacks (1992). Let q1 ¼ 0 and q2 ¼ q in the notation
of the previous section. uðx; q, �Þ satisfies Eq. (6) and has the Gel’fand-Levitan
representation

uðx; q, �Þ ¼
sin

ffiffiffi
�

p
xffiffiffi

�
p þ

Z x
0

Kðx, tÞ
sin

ffiffiffi
�

p
tffiffiffi

�
p dt ð19Þ

where K satisfies the hyperbolic boundary value problem

Ktt � Kxx þ qðxÞK ¼ 0, 0 < t < x < 1

Kðx, 0Þ ¼ 0, Kðx, xÞ ¼
1

2

Z x
0

qðsÞ ds:
ð20Þ

The relationship between K and q can also be expressed as

qðxÞ ¼ 2
d

dx
Kðx, xÞ: ð21Þ

We use the boundary conditions at x ¼ 1 from Eq. (9) to uniquely construct Cauchy
data for K : Then Eq. (20) and the Cauchy data form an overposed boundary value
problem for K , and Eq. (21) yields q:

Let f�ing
1
n¼1, i ¼ 1, 2 be the sequences of eigenvalues corresponding to the bound-

ary condition (9) with �i defined by Eq. (8). Evaluating u from Eq. (19) at x ¼ 1 with
� ¼ �in and applying the appropriate boundary condition yieldsZ 1

0

Kxð1, tÞ
sin

ffiffiffiffiffi
�in

p
tffiffiffiffiffi

�in
p dt� �ið�

i
nÞ

Z 1

0

Kð1, tÞ
sin

ffiffiffiffiffi
�in

p
tffiffiffiffiffi

�in
p dt

¼ �ið�
i
nÞ
sin

ffiffiffiffiffi
�in

p
ffiffiffiffiffi
�in

p � cos
ffiffiffiffiffi
�in

p
ð22Þ

for i ¼ 1, 2 and n ¼ 1, 2, . . . . Equations (20)–(22) now form the overdetermined
boundary value problem for K mentioned previously. Theorem II.1 shows that the
Cauchy data Kð1, tÞ and Kxð1, tÞ can be uniquely recovered from the system (22), and
that the Cauchy data uniquely determines the solution of the inverse problem q:

Since qðxÞ ¼ 2ðd=dxÞKðx, xÞ, use of d’Alembert’s formula for the inhomo-
geneous wave equation leads to the following nonlinear integral equation for q

qðxÞ ¼ 2 Ktð1, 2x� 1Þ þ Kxð1, 2x� 1Þð Þ � 2

Z 1

x

qð yÞKð y, 2x� yÞ dy: ð23Þ

The nonlinearity arises because of the dependence of K on q: We can construct q by
using a successive approximation method with this integral equation. Choosing an
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initial guess q0ðxÞ, set

qnþ1ðxÞ ¼ 2 Ktð1, 2x� 1Þ þ Kxð1, 2x� 1Þð Þ

�2

Z 1

x

qnð yÞkð y, 2x� y; qnÞ dy
ð24Þ

where kðx, t; qÞ is the solution of

ktt � kxx þ qðxÞk ¼ 0, 0 � tj j � x � 1 ð25Þ

kð1, tÞ ¼ Kð1, tÞ, kxð1, tÞ ¼ Kxð1, tÞ, � 1 � t � 1: ð26Þ

The uniqueness of the Cauchy data leads immediately to the unique solution of
the boundary value problem (25)–(26) at each step in the successive approximation.
Hence each iterate qnþ1 is uniquely defined by the previous iterate qn: The solution of
the inverse problem is a fixed point of the mapping T : q! 2ðd=dxÞkðx, x; qÞ:
Uniqueness of the solution of the inverse problem follows since the map T is
known to have a unique fixed point, see Rundell and Sacks (1992, Thm. 1).

We can modify the inverse problem so that
R 1
0 qðxÞ dx ¼ 0 by estimating �qq from

the asymptotics, subtracting it from the eigenvalues and replacing the boundary
coefficients ða, b, c, d Þ with ða, a �qqþ b, c, c �qqþ d Þ: As a result, it is reasonable to set
q0 � 0: In this case q1ðxÞ ¼ 2 Ktð1, 2x� 1Þ þ Kxð1, 2x� 1Þð Þ and no solution of the
boundary value problem (25)–(26) is computed during the first iteration of the
algorithm. q1ðxÞ is simply the linearization of the inverse problem at q ¼ 0, and in
many cases is quite a good approximation to q: Using essentially the same argument
as Sacks (1988, Lemma 4.1), it can be shown that for q 2 L1

ð0, 1Þ it follows that
k 2W1,1: This implies that q� q1 2 Cð½0, 1�Þ, which is one degree smoother than q:
Thus q1 captures all the discontinuities of q, adding to its appeal as an excellent first
approximation.

In practice, this algorithm is implemented with finite data. Since infinite
sequences of eigenvalues are required for the unique recovery of q, one may ask
what in fact is being recovered. This algorithm augments the finite data with the
eigenvalues of q0 that correspond to those missing from our sequences. Essentially,
we recover a perturbation from q0: Thus the choice of q0 is critical—if there are
discontinuites in q, there should be discontinuities in q0:

IV. QUASI-NEWTON ALGORITHM

Lowe et al. (1992) developed a technique based on a shooting method common
in the numerical solution of two-point boundary value problems. For any given
potential q and the eigenvalue sequence corresponding to a particular choice of
boundary conditions, the eigenfunctions can essentially be determined using only
the left endpoint data. Thus the right endpoint boundary condition amounts to
additional information which can be used in conjunction with a quasi-Newton
scheme to recover the unknown potential q:

Recall that the inverse problem is to recover the unknown potential q 2 L2
½0, 1�

from two sequences of eigenvalues f�ing
1
n¼1 and their associated boundary condition
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constants ai, bi, ci, di, for i ¼ 1, 2, where

�u00 þ qu ¼ �1nu, uð0Þ ¼ 0, ða1�
1
n þ b1Þuð1Þ ¼ ðc1�

1
n þ d1Þu

0
ð1Þ ð27Þ

�u00 þ qu ¼ �2nu, uð0Þ ¼ 0, ða2�
2
n þ b2Þuð1Þ ¼ ðc2�

2
n þ d2Þu

0
ð1Þ: ð28Þ

We seek the zeros of the functions

G1ð�; qÞ ¼ �1ð�Þuð1; q, �Þ � u
0
ð1; q, �Þ ð29Þ

G2ð�; qÞ ¼ �2ð�Þuð1; q, �Þ � u
0
ð1; q, �Þ ð30Þ

where, as before, uðx; q, �Þ represents the solution to the initial value problem

Lqu :¼ �u00 þ qðxÞu ¼ �u, uð0Þ ¼ 0, u0ð0Þ ¼ 1 ð31Þ

and �i are defined by Eq. (8).
We shall seek the approximation

qNðxÞ ¼
X2N
k¼1

qk	kðxÞ ð32Þ

for which �i1, . . . , �
i
N are zeros of the functions Gið�; q

N
Þ for i ¼ 1, 2: Since we seek

q 2 L2
½0, 1�, the set f	kðxÞg

2N
k¼1 should be the first 2N elements of a basis for L2

½0, 1�:
In order to remove the necessity of a constant basis function and to facilitate the use
of a quasi-Newton technique, we assume here that the data has already been
modified so that the potential q has zero mean.

Let�N � ð�11, . . . , �
1
N , �

2
1, . . . , �

2
NÞ:Let ~qq ¼ ðq1, . . . , q2NÞ.DefineF : R2N

! R2N by

Fjð�N; ~qqÞ � �1ð�
1
j Þujð1; ~qqÞ � u

0
jð1; ~qqÞ

FN þ jð�N; ~qqÞ � �2ð�
2
j Þvjð1; ~qqÞ � v

0
jð1; ~qqÞ

ð33Þ

for 1 � j � N, where ujðx; ~qqÞ ¼ uðx; q
N , �1j Þ and vjðx; ~qqÞ ¼ uðx; q

N , �2j Þ are defined by
Eq. (31). Applying the technique developed by Lowe et al. (1992) for the inverse
Sturm-Liouville problem with eigenparameter independent boundary conditions, we
seek a vector ~qq ¼ ðq1, . . . , q2NÞ for which Fð�N; ~qqÞ ¼ 0:

The use of a quasi-Newton scheme in the eigenparameter independent Sturm-
Liouville problem (Lowe et al., 1992) yields results within 1% of those attained with
a standard Newton scheme. The amount of computation involved in the quasi-
Newton scheme is significantly lower than in the standard Newton scheme. As a
result, we have chosen to implement a quasi-Newton scheme rather than a standard
Newton scheme in order to determine ~qq:

qð0Þ ¼ 0

Fqð�N; ~00Þ�q
ðmÞ

¼ �Fð�N; q
ðmÞ

Þ

qðmþ1Þ
¼ qðmÞ þ �qðmÞ

ð34Þ

where Fq is the Jacobian of F and where we have dropped the vector notation on q
for convenience. Since

R 1
0
qðxÞ dx ¼ 0, the use of qð0Þ � 0 is a reasonable choice.

We are essentially linearizing the function F about q ¼ 0, and provided that kqk
is not too large, the first iterate gives a good approximation.
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In order to guarantee convergence of the quasi-Newton algorithm (34),
the Jacobian Fqð�N; ~00Þ must be nonsingular. If the Jacobian is well-conditioned,
then one can expect accurate results. The rate of convergence of the algorithm
depends primarily on kqk, the distance between the initial guess, qð0Þ, and the
function sought, q:

The Jacobian Fqð�N; 0Þ has the form

@Fj
@qk

ð�N; 0Þ ¼ �1ð�
1
j Þ
@uj
@qk

ð1; ~00Þ �
@u0j
@qk

ð1; ~00Þ

@FNþj
@qk

ð�N; 0Þ ¼ �2ð�
2
j Þ

@vj
@qk

ð1; ~00Þ �
@v0j
@qk

ð1; ~00Þ:

It is straightforward (Lowe et al., 1992, Lemma 1), to establish that

@uj
@qk

ðx; ~00Þ ¼

Z x
0

ujðx� t; ~00Þujðt; ~00Þ	kðtÞ dt:

Hence

@uj
@qk

ð1; ~00Þ ¼
1

�1j

Z 1

0

sin
ffiffiffiffiffi
�1j

q
ð1� tÞ


 �
sin

ffiffiffiffiffi
�1j

q
t


 �
	kðtÞ dt

@u0j
@qk

ð1; ~00Þ ¼
1ffiffiffiffiffi
�1j

q Z 1

0

cos
ffiffiffiffiffi
�1j

q
ð1� tÞ


 �
sin

ffiffiffiffiffi
�1j

q
t


 �
	kðtÞ dt

with analogous expressions for ð@vj=@qkÞð1; ~00Þ and ð@v0j=@qkÞð1; ~00Þ:
A block structure for the Jacobian can be ensured by a particular choice of

f	kðxÞg
2N
k¼1: The choice of basis and the asymptotic behavior of the eigenvalues

(c.f. Appendix), which is detemined by the nature of the boundary constants
c1, c2, determine the nature of these blocks. If c1 ¼ 0 and c2 6¼ 0 and the basis

	kðxÞ ¼ cosð2k�xÞ, 	Nþk ¼ cos ð2k� 1Þ�x k ¼ 1, . . . ,N

is used then the Jacobian can be shown to be diagonally dominant provided that the
eigenvalues satisfy

�1j � j
2�2

�� �� � �2, �2j � ð j � 1=2Þ2�2
�� �� � �2

for  sufficiently small. The analysis is similar to that given by Lowe et al. (1992)
for their algorithm for the eigenparameter independent inverse Sturm-Liouville
problem. By continuity, this diagonal dominance can be extended if the boundary
coefficients are varied. However diagonal dominance cannot be proven in general
and examples where the Jacobian is not diagonally dominant can be found,
e.g., a1 ¼ 2, b1 ¼ 1, c1 ¼ 0, d1 ¼ 4, and a2 ¼ 2, b2 ¼ 1, c2 ¼ 4, d2 ¼ 3 with q ¼ 0:
In our experience, the Jacobian is always nonsingular, but this cannot be proven.

In practice, our choice of basis determines the behavior of the q that we recover.
For example, if q is smooth then a Fourier basis is appropriate whereas a basis of
linear splines is more appropriate for a piecewise q:
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V. NUMERICAL RESULTS

The direct problem for a given qðxÞ and boundary constants a, b, c, d was solved
using the FORTRAN software SLEDGE which is specifically designed to solve the
eigenparameter dependent Sturm-Liouville problem. Details can be found in (Pruess
and Fulton, 1993; Pruess et al., 1995).

The data for the inverse scheme consists of two sets of N eigenvalues and from
two different sets of boundary constants. The extra eigenvalue and, if necessary, any
negative eigenvalues are removed from the data. In situations where the mean of the
potential is non-zero, the mean can be estimated from each sequence using the
asymptotic formulae (c.f. Appendix)

�qq ¼ �N � ðN � 1=2Þ2�2
þ 2a=c, c 6¼ 0 ð35Þ

�qq ¼ �N �N2�2
� 2d=a, c ¼ 0 ð36Þ

as appropriate. The average of these estimates is subtracted from the eigenvalue
sequence and used to replace the boundary constants ða, b, c, d Þ with ða,
a �qq þ b, c, c �qqþ d Þ: The data is then used to reconstruct qðxÞ � �qq, from which the
original qðxÞ is readily obtained. For the Quasi-Newton algorithm, an alternative
approach is to ensure that the basis used contains a constant function.

V.A. Implementation Issues for the Gel’fand-Levitan Algorithm

The Cauchy data Kð1, tÞ,Kxð1, tÞ, satisfies the two equations represented by
Eq. (22). For i ¼ 1, 2 and n ¼ 1, 2, . . . ,N, these equations are of the formZ 1

0

Kxð1, tÞ � �ð�inÞKð1, tÞ
� 

sin
ffiffiffiffiffi
�in

p
t dt ¼ fi: ð37Þ

We seek Kð1, tÞ and Kxð1, tÞ of the form

Kð1, tÞ ¼
XN
k¼1

kukðtÞ, Kxð1, tÞ ¼
XN
k¼1

�kukðtÞ

where fukg
N
k¼1 be a set of basis functions on ½0, 1�:We used ukðtÞ ¼ sin k�t as our basis

and solved the resulting linear system for  and �: Other choices of uk are feasible,
provided that they are chosen so that the matrices in the system remain nonsingular
and well-conditioned.

Finally, successive approximation is used in

qnþ1ðxÞ ¼ 2 Ktð1, 2x� 1Þ þ Kxð1, 2x� 1Þð Þ

� 2

Z 1

x

qnð yÞkð y, 2x� y; qnÞ dy

to reconstruct q: The reconstructed Cauchy data is used in the first two terms and
also in the computation of k, which is carried out using a second-order finite
difference scheme. As mentioned previously, the choice of q0 affects the quality of
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the reconstruction. In all cases discussed, q0 � 0 was used. The convergence criterion
for the algorithm was kqn � qnþ1k2 < 10�4:

V.B. Implementation Issues for the Quasi-Newton Algorithm

Implementation of the Quasi-Newton scheme (34) involves the computation
of a nonsingular Jacobian Fqð�N; ~00Þ and the vector Fð�N; q

ðmÞ
Þ: The computation

of F involves the solution of the initial value problems

�u00 þ qðxÞu ¼ �u, uð0Þ ¼ 0, u0ð0Þ ¼ 1

with q ¼ qðmÞ and � ¼ �i or � ¼ �i as appropriate. This was carried out using a
Runge-Kutta adaptive routine from the Matlab ODE suite. Although a variety of
different bases were tested, the basis used in the folowing examples was

	kðxÞ ¼ cosð2k�xÞ,	Nþk ¼ cos ð2k� 1Þ�x k ¼ 1, . . . ,N:

The convergence criterion for the algorithm was k�qk2 < 10�4:

V.C. Examples

The first example considers the function qðxÞ ¼ 16x2e�8x
� ð1� 41e�8

Þ=16 and
the boundary conditions associated with the constants a1 ¼ 2, b1 ¼ 2, c1 ¼ 0, d1 ¼ 1
and a2 ¼ 2, b2 ¼ 1, c2 ¼ 1, d2 ¼ 1: This function has zero mean, �qq ¼ 0: Figure 1
shows the application of the Quasi-Newton algorithm to q using sequences of 5
and 10 eigenvalues. Both reconstructions converged in 3 iterations with residuals
of kq� q5k2 ¼ 0:0099, and kq� q10k2 ¼ 0:0039: Figure 2 shows the application of
the Gel’fand-Levitan algorithm to q1 using sequences of 5 and 10 eigenvalues. Both
reconstructions converged in 2 iterations with residuals of kq� q5k2 ¼ 0:0201, and
kq� q10k2 ¼ 0:0089:

Figure 3 shows the results of both algorithms for the piecewise function

qðxÞ ¼

14x� 5 0 < x � 1=2

2 1=2 < x � 3=4

1 3=4 < x � 1

8><
>:

With sequences of 10 eigenvalues, the Quasi-Newton algorithm converged in 7 itera-
tions with a residual of kq� q7k2 ¼ 0:8543: Most of the error occurs at the discon-
tinuity. This is due to the fact that we are essentially constructing a Fourier series
which, at a discontinuity, will converge to average of the right-handed and left-
handed limits. With sequences of 10 eigenvalues, the Gel’fand-Levitan algorithm
also converged in 7 iterations but with a residual of kq� q7k2 ¼ 7:5712: For piece-
wise functions, this algorithm requires far more eigenvalues to produce accurate
results. With sequences of 44 eigenvalues, the residual was kq� q6k2 ¼ 1:4049
after 6 iterations. A piecewise choice of q0 would improve this.
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Figure 4 shows qðxÞ ¼ 6x2ð1� xÞ, which has nonzero mean, �qq ¼ 0:5: The
reconstructions shown are for boundary constants a1 ¼ 2, b1 ¼ 2, c1 ¼ 0, d1 ¼ 1
and a2 ¼ 2, b2 ¼ 1, c2 ¼ 1, d2 ¼ 1, with 10 eigenvalues. For the Quasi-Newton
algorithm, the reconstruction converged in 3 iterations with a residual
kq� q10k2 ¼ 0:0889: For the Gel’fand-Levitan algorithm, the reconstruction
converged in 3 iterations with a residual kq� q10k2 ¼ 0:0766:

Figure 1. Quasi-Newton algorithm applied to qðxÞ ¼ 16x2e�8x
� ð1� 41e�8

Þ=16 from

boundary conditions associated with a1 ¼ 2, b1 ¼ 2, c1 ¼ 0, d1 ¼ 1 and a2 ¼ 2, b2 ¼ 1,

c2 ¼ 1, d2 ¼ 1:
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V.C.1. Variation of the Boundary Constants

From the uniqueness argument of Sec. II, our boundary constants must satisfy
either

a1 a2
c1 c2

����
���� 6¼ 0 or

b1 b2
d1 d2

����
���� 6¼ 0 ð38Þ

Figure 2. Gel’fand-Levitan algorithm applied to qðxÞ ¼ 16x2e�8x
� ð1� 41e�8

Þ=16 from

boundary conditions associated with a1 ¼ 2, b1 ¼ 2, c1 ¼ 0, d1 ¼ 1 and a2 ¼ 2, b2 ¼ 1,

c2 ¼ 1, d2 ¼ 1:
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in order for a unique solution of the inverse problem to exist. These conditions will
be referred to as the ac-condition and the bd-condition.

Figure 5 shows reconstructions from the quasi-Newton algorithm for various
boundary conditions. Figure 6 shows reconstructions from the Gel’fand-Levitan
algorithm. In both cases, qðxÞ ¼ 6x2ð1� xÞ � 1=2 is recovered from data sequences

Figure 3. Quasi-Newton and Gel’fand-Levitan algorithms applied to piecewise qðxÞ from

boundary conditions associated with a1 ¼ 2, b1 ¼ 2, c1 ¼ 0, d1 ¼ 1 and a2 ¼ 2, b2 ¼ 1,

c2 ¼ 1, d2 ¼ 1:
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of 10 eigenvalues, whose boundary constants satisfy either the ac-condition (top
right), the bd-condition (bottom left and right) or both conditions (top left). The
top left graphs in Figs. 5 and 6 have boundary constants that satisfy both the ac-
condition and the bd-condition. The ac-condition is violated in the top right and

Figure 4. Quasi-Newton and Gel’fand-Levitan algorithms applied to qðxÞ ¼ 6x2ð1� xÞ from

boundary conditions associated with a1 ¼ 2, b1 ¼ 2, c1 ¼ 0, d1 ¼ 1 and a2 ¼ 2, b2 ¼ 1,

c2 ¼ 1, d2 ¼ 1:
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bottom left graphs. The bc-condition is violated in the bottom right graphs. It is
worth noting that the most significant degradation in the quality of the reconstruc-
tion occurs when when the violation of the ac-condition is due to c1 ¼ c2 ¼ 0:
In this case, the asymptotic behavior of the two eigenvalue sequences is so similar
that the algorithms cannot differentiate between them well enough to build a good
reconstruction.

Figure 5. Quasi-Newton recovery of q from various combinations of boundary conditions.

100 McCarthy and Rundell



©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

APPENDIX. ASYMPTOTIC BEHAVIOR OF THE EIGENVALUES

Let �Dn , n ¼ 1, 2, 3, . . . be the eigenvalues of the problem with Dirichlet boundary
conditions at both ends,

�u00 þ qu ¼ �u, uð0Þ ¼ 0, uð1Þ ¼ 0:

Figure 5. Continued.
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Figure 6. Gel’fand-Levitan recovery of q from various combinations of boundary conditions.

102 McCarthy and Rundell



©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

Figure 6. Continued.
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Theorem A.1. If � ¼ ad � bc > 0 and �qq ¼
R 1
0 q, then the eigenvalues of (1,2,3) are

given by �0 and the sequence �1 < �2 < �3 � � � :

. Dirichlet–Dirichlet eigenvalues: If c ¼ 0, then �0 < �1, the eigenfunctions un
corresponding to �n have exactly n zeros in ð0, 1Þ andffiffiffiffiffi

�n
p

¼ n�þ
1

n�

�qq

2
þ
d

a

� �
þO

1

n2

� �
:

That is

�n ¼ n
2�2

þ �qqþ 2d=aþ oð1Þ:

. Dirichlet–Neumann eigenvalues: If c 6¼ 0, the eigenfunctions un corresponding
to �n have exactly n� 1 zeros in ð0, 1Þ andffiffiffiffiffi

�n
p

¼ ðn� 1=2Þ�þ
1

ðn� 1=2Þ�

�qq

2
�
a

c

� �
þO

1

n2

� �
:

That is

�n ¼ ðn� 1=2Þ2�2
þ �qq� 2a=cþ oð1Þ:

If N � 0 is such that �DN < �d=c � �DNþ1, where �D0 ¼ �1, then the eigen-
function corresponding to �0 has exactly N zeros in ð0, 1Þ:

This theorem is essentially a restatement of Theorems 3.1, 3.5, and 5.3 and
Corollaries 3.6 and 5.4 from Binding et al. (2000), although the notation has been
modified to that of Browne and Sleeman (1997). Extensive discussion of the spectral
theory of this type of problem can be found in various articles of Binding et al. (1993,
2000, 2002), and Browne and Sleeman (1996).
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