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This paper develops an optimal control framework for an ordinary differential equation model to
investigate the introduction of sterile mosquitoes to reduce the incidence of mosquito-borne diseases.
Existence of a solution given an optimal strategy and the optimal control is determined in association
with the negative effects of the disease on the population while minimizing the cost due to this control
mechanism. Numerical simulations have shown the importance of effects of the bounds on the release of
sterile mosquitoes and the bounds on the likelihood of egg maturation. The optimal strategy is to
maximize the use of habitat modification or insecticide. A combination of techniques leads to a more
rapid elimination of the wild mosquito population.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

This paper develops a model for the controlled release of sterile
insects into an environment where there is an existing population
of wild insects. We will also consider the effect of controlling
fecundity by altering the environment in such a way that breeding
rate is reduced. This activity would take the form of reducing the
locations for breeding though removing sources of standing water
and of using larvicide or ovacide. We will not consider broad spec-
trum insecticides because these would also kill our sterilized in-
sects. There has been success in using traps for male insects
along with sterile insect release [18], however, we will not con-
sider this third control method in this paper.

The importance of controlling mosquito populations is hard to
overstate. It is well known that such diseases as yellow fever, den-
gue fever, epidemic polyarthritis, Rift Valley fever, Ross River Fever,
St. Louis encephalitis, West Nile virus, Japanese encephalitis,
LaCross encephalitis, and malaria are carried and transmitted by
mosquitoes, [12,26,29,30,34,39,41,42].

This paper considers a model that can applied to many insects,
including mosquitoes. Optimal control theory is then applied with
a variety of cost functionals to find the best strategy for reducing
insect population at minimal cost.
The sterile insect technique was introduced by Knipling [17,18].
The insects are sterilized by irradiation or the application of chem-
ical agents and released to mate with the wild insects. It was used
successfully for the screw worm in the late 1950s and early 1960s
and great hope was held for using the technique for the control of
mosquito populations [19]. Unfortunately, experiments that were
carried out with mosquitoes during the same period met with less
success. For a discussion of the experimental work in this area see
[9,28,38,4].

A number of authors have developed mathematical models
of the interaction between sterile and wild mosquitoes, [17,22,
3,31]. Some sterile release models have been explicitly connected
to particular diseases [7,8,40]. Dumont and Tchuenche [7] consider
pulsed sterile release and demonstrate through equilibrium analy-
sis and simulations that frequent small bursts of sterile insects are
more effective than larger less frequent releases. Esteva and Yang
[8] apply optimal control methods to the rate of introduction of
sterile mosquitoes. An approach developed in [40] attempts to con-
trol both breeding rates and the rate of introduction of sterile mos-
quitoes. No bounds have been imposed on the control (s) in any of
this work which may be not be realistic biologically.

The use of transgenic insects was developed after the sterile
insect technique. Insects carrying a dominant lethal gene are
introduced into the population. Alphey et al. [1,2] provide many
details of the use of both of these techniques. Models that
described the interactions of wild and transgenic mosquitoes
include those by Li [23,24] and Diaz et al. [6]. Optimal control
methods are applied to the rate of introduction of transgenic mos-
quitoes by Rafikov et al. [35,36].
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It is our hope that by developing new bounded control models
for this technique, we may find strategies that will make it more
effective.

1.1. The model

We are particularly interested in Li’s model of the release of
transgenic mosquito populations [24]. Although our focus is on
sterile mosquitoes, we will follow the approach in the referenced
paper for the model we develop here because it captures the fea-
tures we seek to incorporate. We consider a population of wild
mosquitoes, u, and a population of sterilized mosquitoes, w. If
b u;wð Þ is the birth rate of the wild mosquitoes and du u;wð Þ and
dw u;wð Þ are the death rates of the wild population and sterilized
population respectively, we obtain

du
dt
¼ u b u;wð Þ � du u;wð Þð Þ

dw
dt
¼ �wdw u;wð Þ þ S tð Þ

where S is the release rate of sterile mosquitoes. We will assume the
death rate has a constant component and a component that in-
creases with total population density. Thus we will have

du u;wð Þ ¼ M þ K uþwð Þ
dw u;wð Þ ¼ M þ K uþwð Þ

where the equality of the constants is an implicit assumption of
equal fitness between the wild population and the sterilized popu-
lation. We now turn our attention to the birthrate, bðu;wÞ.

Continuing to follow the approach in [24], we let cðu;w; tÞ be
the number of matings that occur per unit time. Therefore, we
can expect that the number of matings of wild type to wild type
will be

bðu;wÞ ¼ cðu;w; tÞ u
uþw

This will give us

du
dt
¼ u cðu;w; tÞ u

uþw
�M � K uþwð Þ

� �
dw
dt
¼ �w M þ K uþwð Þð Þ þ S tð Þ

Let us consider a couple of choices for the function cðu;w; tÞ. When
the total population is large, we expect that mosquitoes will have
no difficulty finding a mate, giving us cðu;w; tÞ as a function only
of time, AðtÞ which is the product of such factors as the likelihood
of a mating producing eggs, the (fixed) proportion of the population
that is female, the likelihood that an appropriate place can be found
so that when the eggs are laid they will hatch, and so on. AðtÞ can be
reduced through the application of larvicide or insecticide, the
clearing of breeding sites, etc. Henceforth, we will generally refer
to such habitat modification as the application of insecticide, with
the understanding that habitat modification can have other
features. The function AðtÞ will serve as a control as well as S, since
we are assuming we can take action to reduce the amount of suit-
able real estate for successful egg laying. This gives the following
model

du
dt
¼ u

AðtÞu
uþw

�Mu� K uþwð Þ
� �

dw
dt
¼ �w Mwþ K uþwð Þð Þ þ S tð Þ

When the population is relatively small, we expect the law of mass
action to be pertinent with cðu;w; tÞ ¼ AðtÞ uþwð Þ where the func-
tion AðtÞ is similar to the function AðtÞ described above. This gives us
du
dt
¼ u AðtÞu�M � K uþwð Þð Þ

dw
dt
¼ �w M þ K uþwð Þð Þ þ S tð Þ

We are particularly interested in a function that can capture the
dynamics of both large and small populations simultaneously. We
seek a functional form that will lead to approximately the models
above. Once again, we follow the work of Li [24] and choose a Hol-
ling-II-type functional response, [15]. Fixing a positive constant
e > 0, we set

c u;wð Þ ¼ A
uþw

eþ uþw

giving us

du
dt
¼ u

Au
eþ uþw

�M � K uþwð Þ
� �

dw
dt
¼ �w M þ K uþwð Þð Þ þ S tð Þ

We now rescale, letting u ¼ u
e and w ¼ w

e . Setting a ¼ A, l ¼ Me,
g ¼ Ke, and s ¼ S

e yields our final model,

du
dt
¼ u

au
1þ uþw

� l� g uþwð Þ
� �

ð1Þ

dw
dt
¼ �w lþ g uþwð Þð Þ þ s tð Þ: ð2Þ

where the initial conditions are

uð0Þ ¼ u0; wð0Þ ¼ w0 ð3Þ

and the controls are bounded with M1;M2;N1;N2 P 0 such that

M1 6 aðtÞ 6 M2; N1 6 sðtÞ 6 N2: ð4Þ

The rest of this paper is organized as follows. In Section 2 we estab-
lish basic facts about the ODE model. In Section 3, we obtain the
existence of an optimal control pair a; sð Þfor different objective
functionals. In Section 4 we implement the forward–backward
sweep method for each of our cases to obtain numerical results.
Finally, in Section 5, we provide discussion of our results and their
implications for the optimal control of mosquito populations.

2. Existence

In this section we will obtain the existence, uniqueness, non-
negativity, and boundedness of solutions to our model in a single
theorem.

Theorem 2.1. For nonnegative initial conditions, the model (1), (2)
has a unique solution which exists for all time and is nonnegative in
each component.
Proof. Local existence for the system is standard as in [27]. To
obtain the result, we first define supersolutions u1 and w1 as in

du1

dt
¼ u1ða� gu1Þ

dw1

dt
¼ N2 � gw1:

These supersolutions are bounded on a finite interval. Hence, via a
comparison result [33], we have that u and w are bounded above on
their interval of existence. Moreover, we can let u2 and w2 represent
subsolutions of the following system,

du2

dt
¼ �Ku1

dw2

dt
¼ �Kw2:

where K is a sufficiently large constant. Therefore, we obtain that u
and w are bounded below by zero. Consequently, with the coeffi-
cients of our original system (1), (2) being bounded, we obtain that
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a solution set is nonnegative and bounded. Using a result from
Lukes [25], a nonnegative, unique solution exists to the system. h

Since we have the existence for the solution for the mosquito
system for all time, we can investigate the optimal control strategy
associated with different objective functionals subject to the origi-
nal system (1), (2).

3. Optimal controls

3.1. Objective functional

We seek to minimize each of the following objective functionals

J0ða; sÞ ¼
Z T

0
ðBa2 þ s2 þ uÞdt ð5Þ

and

J1ða; sÞ ¼
Z T

0
ðBa2 þ sþ uÞdt ð6Þ

over the set of admissible controls

V ¼ fa; s measurable jM1 6 aðtÞ 6 M2 and N1 6 sðtÞ
6 N2; 8t 2 ½0; T�g ð7Þ

Since we have a nonlinear system, we consider a mixture of nonlin-
ear and linear controls. For J0ða; sÞ, we minimize the nonlinear cost
associated with reproduction, aðtÞ, and the nonlinear cost corre-
sponding to the release of sterile mosquitoes, sðtÞ. In J0ða; sÞ and
J1ða; sÞ, we also seek to minimize the amount of wild mosquitoes
in total. The difference between J0ða; sÞ and J1ða; sÞ results in analyz-
ing the amount associated with the release of sterile mosquitoes in
J1ða; sÞ rather than the nonlinear cost of such a process in J0ða; sÞ.
Further, we assume a quadratic cost [8,35,40] since we believe that
the effects of the larvicide, adulticide and insecticides represent a a
nonlinear function to the system. The quadratic term is multiplied
by a coefficient, B, which allows for the relative importance of the
term. Essentially, we choose to augment the coefficient of a2 to ana-
lyze the ratio of the importance that one puts on the insecticide ver-
sus sterile control factors. In the numerics and discussion sections,
we will consider fixing a ¼ 1 to allow no insecticide or fixing s ¼ 0
to allow no sterile release.

3.2. Existence

We will show the existence of optimal controls for objective
functionals (5) and (6). The first case will be shown using a stan-
dard theorem from Fleming and Rishel [10].

Theorem 3.1 (Existence of a quadratic optimal control). Given the
objective functional (5), subject to the system given by Eqs. (1), (2),
with uð0Þ ¼ u0;wð0Þ ¼ 0, and the admissible control set (7) then there
exists an optimal control v�ðtÞ ¼ ða�ðtÞ; s�ðtÞÞ such that

min
a;s2V

J0ða; sÞ ¼ J0ða�; s�Þ:

Proof. In order to obtain the results, we much show that the fol-
lowing conditions are met from Fleming and Rishel, [10]:

1. The class of all initial conditions with a control vector~vðtÞ in the
admissible control set along with each state equation being sat-
isfied is not empty.

2. The admissible control set V is closed and convex.
3. Each right hand side of the state system is continuous, is

bounded above by a sum of the bounded control and the state,
and can be written as a linear function of the control vector ~vðtÞ
with coefficients depending on time and the state.

4. The integrand of the objective functional (5) is convex on V and
is bounded below.

Note that the supersolutions u;w of

du
dt
¼ uaðtÞ

dw
dt
¼ sðtÞ

are bounded on the finite time interval. Since the solutions are non-
negative, the system (1), (2) is then bounded above and below. As in
the Existence Section 2 we know that a solution to the system ex-
ists. Hence, condition 1 is fulfilled. The second condition is fulfilled
from the definition of the admissible control set V. For the third con-
dition, note that the continuity of the right hand side of system (1),
(2) is guaranteed since uðtÞ and wðtÞ are nonnegative, for all t in the
finite time interval. Next, define

fðv;x; tÞ ¼ �lu� gu2 � guw

�lw� guw� gw2

 !
þ

u2

1þuþw 0
0 1

 !
aðtÞ
sðtÞ

� �
;

where x is the state vector. Using the boundedness of the solutions
and the controls,

fðv;x; tÞj j 6 umax
M2

N2

� ����� ���� 6 U X
!��� ���þ V

!ðtÞ
��� ���� �

;

where umax is an upper bound for uðtÞ and U is dependent upon the
coefficients of the system.

For the final condition, define â ¼ ð1� pÞa0 þ pa1; ŝ ¼
ð1� pÞs0 þ ps1, and û ¼ ð1� pÞu0 þ pu1. It is necessary to show that

f ðâ; ŝ; û; t; TÞ 6 ð1� pÞf ða0; s0;u0; t; TÞ þ pf ða1; s1;u1; t; TÞ;

where f denotes the integrand of objective functional (5), all con-
trols are in the admissible control set (7), and p 2 ð0;1Þ. Observe
that

f ðâ; ŝ; û; t; TÞ � ð1� pÞf ða0; s0;u0; t; TÞ � pf ða1; s1;u1; t; TÞ

¼ Bðp2 � pÞða0 � a1Þ2 þ ðp2 � pÞðs0 � s1Þ2

The difference ðp2 � pÞ must be negative since p 2 ð0;1Þ. Since
B; ða0 � a1Þ2, and ðs0 � s1Þ2 are always positive, then f ðâ; ŝ; û; t; TÞ 6
ð1� pÞf ða0; s0;u0; t; TÞ þ pf ða1; s1;u1; t; TÞ, as required. Finally, since
uðtÞ is always nonnegative and the controls aðtÞ and sðtÞ are
bounded below by a nonnegative constant, then the integrand of
the objective functional must also be bounded below. h

The existence of an optimal control for objective functional (6)
is established using the classical Filippov-Cesari Theorem, [14,37].
We employ this theorem because of the linearity in the sterile con-
trol. For application of Fleming and Rishel existence criteria, the
appropriate convexity is required in the objective functional for
the controls. We do not have that in the second objective func-
tional J! given by (6). Hence, the Filippov-Cesari Theorem is used.
We define

~aðtÞ ¼ aðtÞ
M2

and ~sðtÞ ¼ sðtÞ
N2

;

so that 0 6 ~a 6 1 and 0 6 ~s 6 1. Note also that eV is used to denote
the admissible control set that reflects these changes in bounds.

Theorem 3.2 (Existence of a mixed quadratic/linear optimal con-
trol). Given the objective functional (6), subject to the system given by
Eqs. (1), (2), with uð0Þ ¼ u0;w0 ¼ 0, and the admissible control set (7)
then there exists an optimal control ~v�ðtÞ ¼ ð~a�ðtÞ;~s�ðtÞÞ such that
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min
~a; ~s2eV J1ð~a;~sÞ ¼ J1ð~a�;~s�Þ;

if conditions (1)–(4) of Theorem 7.1 in the Appendix are met.
Proof. Applying the notation of Theorem 7.1 to the optimal control
problem given above, we have

x ¼
u

w

� �

Uðx; ~v; tÞ ¼
B~a2 þ ~sþ uþ c

u2~a
1þuþw� lu� gu2 � guw

�lw� guw� gw2 þ ~s

0B@
1CA

where c 6 0 is a constant defined in the aforementioned theorem in
the Appendix.

The first condition is satisfied using an argument similar to that
showing the existence of an admissible solution pair using
objective functional (5). To show the convexity condition, define

w1ðx; ~v; tÞ ¼
B ~a1

2 þ ~s1 þ uþ c1

u2 ~a1
1þuþw� lu� gu2 � guw

�lw� guw� gw2 þ ~s1

0B@
1CA

and

w2ðx; ~v; tÞ ¼
B ~a2

2 þ ~s2 þ uþ c2

u2 ~a2
1þuþw� lu� gu2 � guw

�lw� guw� gw2 þ ~s2

0B@
1CA

where c1; c2 6 0 as in the definition of the constant c in U in the
Appendix.

Let w3 ¼ kw1 þ ð1� kÞw2, where k 2 ½0;1�. Split the equation
into two vectors - one vector containing the modified terms and
the other vector the unchanged terms:

w3ðx; ~v; tÞ ¼
u

�lu� gu2 � guw

�lw� guw� gw2

0B@
1CAþ B �a3 þ s3 þ c3

u2

1þuþw

� �
a3

s3

0B@
1CA;

where a3 ¼ k ~a1 þ ð1� kÞ ~a2; s3 ¼ k ~s1 þ ð1� kÞ ~s2; c3 ¼ kc1þ ð1� kÞc2,
and �a3 ¼ k ~a1

2 þ ð1� kÞ ~a2
2. Note that, since 0 6 ~a 6 1 and 0 6 ~s 6 1,

then a3; s3; �a3 2 eV . Then

w3ðx; ~v; tÞ ¼

B �a3 þ s3 þ uþ c3

u2

1þuþw

� �
a3 � lu� gu2 � guw

�lw� guw� gw2 þ s3

0BB@
1CCA;

which means that kw1 þ ð1� kÞw2 2 Uðx; ~v; tÞ; therefore Uðx; ~v; tÞ
meets the convexity requirement.

For the third condition, a number d must be found such that
kxk 6 d; 8t 2 ½0; T� and all admissible pairs ðx; ~vÞ. To do this, we
must find an upper bound for the state Eqs. (1), (2). However, in the
existence proof for objective functional (5), we observed that this
system is bounded; therefore, letting this upper bound be d
satisfies this condition.

The fourth condition is satisfied by definition since both
controls are bounded.

Since an optimal control ~v�ðtÞ ¼ ð~a�ðtÞ;~s�ðtÞÞ exists, then there
must also exist an optimal control pair v�ðtÞ ¼ ða�ðtÞ; s�ðtÞÞ. h
3.3. Characterization of the controls

As with existence, we will provide justification for the charac-
terization of the optimal control with only two cases; namely,
objective functionals J0ða; sÞ in Eq. (5) and J1ða; sÞ in Eq. (6).
3.3.1. CASE 1: objective functional J0ða; sÞ

Theorem 3.3 (Characterization of the optimal control). Given
optimal controls a�ðtÞ; s�ðtÞ and solutions of the corresponding state
system, there exist adjoint variables k1 and k2 satisfying the following:

dk1

dt
¼ � @H

@u
¼ �1� k1

auð2þ uþ 2wÞ
ð1þ uþwÞ2

� l� gð2uþwÞ
" #

þ k2gw

dk2

dt
¼ � @H

@w
¼ k1

au2

ð1þ uþwÞ2
þ gu

" #
þ k2 lþ gðuþ 2wÞ½ �

where

k1ðTÞ ¼ k2ðTÞ ¼ 0:

Furthermore, the analytic representation of the optimal control pair
ða�;u�Þ is given by

a�ðtÞ ¼min max M1;�
k1u2

2Bð1þ uþwÞ

� �
; M2

� �
ð8Þ

s�ðtÞ ¼min max N1;�
k2

2

� �
; N2

� �
: ð9Þ
Proof. Suppose a�ðtÞ and s�ðtÞ are optimal controls and that
X ¼ ðu;wÞ is a corresponding solution to the system (1), (2). We
use standard work in Pontryagin et al. [32] to obtain the result.
To find the analytic representation of the optimal controls a�ðtÞ
and s�ðtÞ, begin by forming the Lagrangian. Since the controls are
bounded, the Lagrangian is

L ¼ H �W1ðtÞðaðtÞ �M1Þ �W2ðtÞðM2 � aðtÞÞ �W3ðtÞðsðtÞ � N1Þ
�W4ðtÞðN2 � sðtÞÞ;

where H is the Hamiltonian given by

H ¼ Ba2 þ s2 þ uþ k1u
au

1þ uþw
� ðlþ gðuþwÞÞ

� �
þ k2 �wðlþ gðuþwÞÞ þ s½ �

and WiðtÞP 0 are penalty multipliers such that

W1ðtÞðaðtÞ �M1Þ ¼ 0
W2ðtÞðM2 � aðtÞÞ ¼ 0

	
at a�ðtÞ

W3ðtÞðsðtÞ � N1Þ ¼ 0
W4ðtÞðN2 � sðtÞÞ ¼ 0

	
at s�ðtÞ:

To find the analytic representation for a�ðtÞ, analyze the necessary
conditions for optimality @L

@a ¼ 0.

@L
@a
¼ @H
@a
�W1 þW2 ¼ 0) 2Baþ k1u2

1þ uþw
�W1 þW2 ¼ 0

By standard optimality techniques for the characterization for the
optimal control a�ðtÞ, we find that

a�ðtÞ ¼min max M1;�
k1u2

2Bð1þ uþwÞ

� �
; M2

� �
:

Similarly,

s�ðtÞ ¼min max N1;�
k2

2

� �
; N2

� �
:

h

We note that k1ðtÞ and k2ðtÞ are bounded above by a constant on
the time interval. We compare the differential equations of the
adjoint system to a supersolution using that we have bounded
solutions u and w from the Existence Section. The adjoint system
can be written as
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dk1
dt

dk2
dt

 !
¼

�auð2þuþ2wÞ
ð1þuþwÞ2

þlþ gð2uþwÞ
h i

gw

au2

ð1þuþwÞ2
þgu

h i
lþgðuþ2wÞ

0@ 1A k1ðtÞ
k2ðtÞ

� �

þ �1
0

� �
:

Using that the parameters and the solutions to the state equations
are nonnegative, we notice that all the terms in the two by two ma-
trix are bounded above by a positive constants, a; b; c, and d.

dy1
dt

dy2
dt

 !
¼

a b

c d

� �
y1ðtÞ
y2ðtÞ

� �
þ
�1
0

� �
:

Using a comparison result [33], we find that k1ðtÞ 6 K and k2ðtÞ 6 K1

where K and K1 are positive constants. Since the adjoints are
bounded, this implies that a� and s� are finite.

3.3.2. CASE 2: objective functional J1ða; sÞ

Theorem 3.4 (Characterization of the optimal control). Given
optimal controls a�ðtÞ; s�ðtÞ and solutions of the corresponding state
system, there exist adjoint variables k1 and k2 satisfying the following:

dk1

dt
¼ � @H

@u
¼ �1� k1

auð2þ uþ 2wÞ
ð1þ uþwÞ2

� l� gð2uþwÞ
" #

þ k2gw

dk2

dt
¼ � @H

@w
¼ k1

au2

ð1þ uþwÞ2
þ gu

" #
þ k2 lþ gðuþ 2wÞ½ �

where

k1ðTÞ ¼ k2ðTÞ ¼ 0:

Furthermore, the representation of a�ðtÞ is given by (8) and the repre-
sentation of s�ðtÞ, found using the switching function

W ¼ @H
@s
¼ 1þ k2;

is given by

s�ðtÞ ¼
N1 if W > 0
N2 if W < 0
singular if W ¼ 0:

8><>: ð10Þ

In addition, if s�ðtÞ is singular on a subinterval ðt1; t2Þ of ½0; T�, then the
singularity is of degree one and the representation of the control on the
singular interval ðt1; t2Þ is given by

s�ðtÞ ¼ � 2Bð1þ uþwÞ4

3k2
1u4 þ 4Bgk2ð1þ uþwÞ4

 !

� k1u4

Bð1þ uþwÞ2

 !
� �k2

1u3½3uþ2ð2þ uþ 2wÞ�
4Bð1þ uþwÞ4

"(

þ k1u3

ð1þ uþwÞ3
� 3k1½lðuþwÞ þgðu2 þw2Þ þ2guw�

2ð1þ uþwÞ2

þ2½lk1 þgk1wþ 1�gk2w� þ gk1ð2þ uþ 2wÞ
2ð1þ uþwÞ � gðk1 þ k2Þ

2

�

þgu gu k1 � k2ð Þ � lk2 þ 1ð Þ½ � � 2gk2w lþg uþwð Þ½ �
	
:

Finally, in order for s�ðtÞ to be minimizing, we must satisfy the Legen-
dre-Clebsch condition [20],

�3k2
1u4

2Bð1þ uþwÞ4
P 2gk2:
Proof. The Hamiltonian in this case is given by

H ¼ Ba2 þ sþ uþ k1u
au

1þ uþw
� ðlþ gðuþwÞÞ

� �
þ k2 �wðlþ gðuþwÞÞ þ s½ �:

The representation for a�ðtÞ is the same as in case 1; however, since
sðtÞ is implemented as a linear control, we must examine the
switching function

W ¼ @H
@s
¼ 1þ k2

in order to find the analytic representation for s�ðtÞ. Note that, since
W ¼ 0 on ðt1; t2Þ, then all time derivatives of W are identically zero;
i.e. d

dt W ¼ 0; d2

d2t
W ¼ 0, etc. We will use this idea to find the represen-

tation of s�ðtÞ on a singular region. To begin, notice that

dW
dt
¼ dk2

dt
¼ k1

au2

ð1þ uþwÞ2
þ gu

" #
þ k2 lþ gðuþ 2wÞ½ �:

Assuming for ease in notational purposes that aðtÞ ¼ a�ðtÞ on ðt1; t2Þ,
we substitute (8) and expand to obtain

dW
dt
¼ �k2

1u4

2Bð1þ uþwÞ3
þ gk1uþ lk2 þ gk2uþ 2gk2w:

Taking a second time derivative yields

d2W

dt2 ¼ �
1

2B
k2

1u4

ð1þ uþwÞ3

" #
0 þ g k1u0 þ uk01


 �
þ lk02

þ g k2u0 þ uk02

 �

þ 2g k2w0 þwk02

 �

:

Since dW
dt ¼

dk2
dt ¼ 0 on ðt1; t2Þ, we eliminate those terms involving k02,

resulting in

d2W

dt2 ¼ �
1

2B
k2

1u4

ð1þ uþwÞ3

" #0
þ g k1u0 þ uk01


 �
þ gk2u0 þ 2gk2w0:

Finding the derivative of the first term yields

d2W

dt2 ¼

� 1
2B
ð1þ uþwÞ3 4k2

1u3u0 þ 2k1u4k01
� 


� 3k2
1u4ð1þ uþwÞ2 u0 þw0½ �

ð1þ uþwÞ6

" #

þ g k1u0 þ uk01

 �

þ gk2u0 þ 2gk2w0:

Finally, after much algebraic simplification, we have that

d2W

dt2 ¼
k1u4

Bð1þ uþwÞ2

 !
� �k2

1u3½3uþ2ð2þ uþ2wÞ�
4Bð1þ uþwÞ4

"

þ k2
1u3

Bð1þ uþwÞ3
�3k1½luþgu2 þ 2guwþlwþgw2�

2ð1þ uþwÞ2

þ2½lk1 þgk1wþ1� gk2w� þgk1ð2þ uþ2wÞ
2ð1þ uþwÞ � gðk1 þ k2Þ

2

�
þgu gu k1 � k2ð Þ � lk2 þ1ð Þ½ � �2gk2w lþg uþwð Þ½ �

þ 3k2
1u4

2Bð1þ uþwÞ4
þ 2gk2

 !
sðtÞ

Now, since d2W
dt2 ¼ 0 on ðt1; t2Þ, we have that
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Fig. 2. Objective functional J0 with B ¼ 1, aðtÞ ¼ 1, 0:5 6 sðtÞ 6 1, initial conditions
u0 ¼ 5, w0 ¼ 5 over the time interval ½0;10�.
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Fig. 3. Objective functional J0 with B ¼ 1, aðtÞ ¼ 1, 0:5 6 sðtÞ 6 1, initial conditions
u0 ¼ 5, w0 ¼ 0 over the time interval ½0;10�.
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sðtÞ ¼ � 2Bð1þ uþwÞ4

3k2
1u4 þ 4Bgk2ð1þ uþwÞ4

 !
k1u4

Bð1þ uþwÞ2

 !(

� �k2
1u3½3uþ 2ð2þ uþ 2wÞ�

4Bð1þ uþwÞ4
þ k2

1u3

Bð1þ uþwÞ3

"

� 3k1½luþ gu2 þ 2guwþ lwþ gw2�
2ð1þ uþwÞ2

þ2½lk1 þ gk1wþ 1� gk2w� þ gk1ð2þ uþ 2wÞ
2ð1þ uþwÞ � gðk1 þ k2Þ

2

�
þgu gu k1 � k2ð Þ � lk2 þ 1ð Þ½ � � 2gk2w lþ g uþwð Þ½ �

	
:

In order for s�ðtÞ to be minimizing on ðt1; t2Þ, the Legendre-Clebsch
condition

ð�1Þq @
@s

d2q

dt2q

@H
@s

P 0

must be satisfied. Please note that q is the order of the singularity.
In this case, this results in

� 3k2
1u4

2Bð1þ uþwÞ4
� 2gk2 P 0;

or

�3k2
1u4

2Bð1þ uþwÞ4
P 2gk2: �

There are a few things to recognize. Immediately following the
proof of the Characterization Theorem related to J0ða; sÞ, we found
that k2ðtÞ 6 K1. First, we know that s� must be finite. Moreover, the
singular case could contribute to the solution. Lastly, we note that
the optimal control representation is unique for small final time.
This is due to the opposite orientations of the state and adjoint sys-
tems. For discussion of the uniqueness of the optimality system
and hence the optimal control, see [21,5].

4. Numerical simulations

At the optimum, we note that the model equations move for-
ward in time from an initial condition, while the adjoint equations
move backward in time from a final condition. In some cases, it is
possible to use Matlab’s bvp4c to solve ODE systems with a variety
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Fig. 4. Objective functional J0 with B ¼ 1, 0 6 aðtÞ 6 1, sðtÞ ¼ 0, initial conditions
u0 ¼ 5, w0 ¼ 5 over the time interval ½0;10�.
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Fig. 5. Objective functional J0 with B ¼ 1, 0 6 aðtÞ 6 1, sðtÞ ¼ 0, initial conditions
u0 ¼ 5, w0 ¼ 0 over the time interval ½0;10�.
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of different types of boundary conditions. However, we found con-
vergence problems with this approach. Instead we followed the
algorithm developed by Hackbusch [13] and recommended by Len-
hart and Workman [21] to solve our optimality system. The
scheme is as follows:

1. Initialize the adjoint variables, k0
1 ¼ 0; k0

2 ¼ 0, and the controls
a0 ¼ ðM1 þM2Þ=2; s0 ¼ ðN1 þ N2Þ=2

2. Use the current adjoint variables kj�1
1 ; kj�1

2 and controls aj�1; sj�1

to solve the state equations for the state variables uj;wj.
3. Use the current state variables uj;wj. to solve the adjoint equa-

tions for the adjoint variables kj
1; k

j
2

4. Update the controls aj; sj using the control characterizations
5. Repeat steps 2–4 until convergence.

The algorithm was implemented in Matlab, using a Runge–Kutta
method to solve the ODEs. The same algorithm was used for both
objective functionals and their corresponding optimality systems.
Following Li’s simulations [24], we set l ¼ 0:25 and g ¼ 0:2 for all
of the simulations presented below, although other parameters
yielded similar results.

4.1. CASE 1: objective functional J0

With the objective functional

J0ða; sÞ ¼
Z T

0
ðBa2 þ s2 þ uÞdt;

we seek to simultaneously reduce the fecundity of the wild
mosquitoes by minimizing the nonlinear cost a2 of the Holling II
reproductive term a for the wild mosquitoes, the nonlinear cost of
s2 of the rate s at which the sterile mosquitoes are being introduced,
and the total number of wild mosquitoes u present over the time
inverval ½0; T�. We note that a value of a ¼ 0 maximizes the impact
of the insecticide by eliminating all growth of the wild mosquitoes
u. Recall that here, and throughout the paper, we generally refer to
habitat modification techniques as the use of insecticide.

Recall that for this objective functional and the bounds
M1 6 aðtÞ 6 M2; N1 6 sðtÞ 6 N2, the model or state variables u;w
and the adjoint variables k1; k2 satisfy the optimality system

du
dt
¼ u

uaðtÞ
1þ uþw

� ðlþ gðuþwÞÞ
� �

ð11Þ

dw
dt
¼ �wðlþ gðuþwÞÞ þ sðtÞ ð12Þ

dk1

dt
¼ �1� k1

auð2þ uþ 2wÞ
ð1þ uþwÞ2

� l� gð2uþwÞ
" #

þ k2gw ð13Þ

dk2

dt
¼ k1

au2

ð1þ uþwÞ2
þ gu

" #
þ k2 lþ gðuþ 2wÞ½ � ð14Þ

with boundary conditions

uð0Þ ¼ u0;wð0Þ ¼ w0; k1ðTÞ ¼ 0; k2ðTÞ ¼ 0: ð15Þ

In Theorem 3.3, the optimal controls are given by

a�ðtÞ ¼min max M1;�
k1u2

2Bð1þ uþwÞ

� �
;M2

� �
ð16Þ

s�ðtÞ ¼min max N1;�
k2

2

� �
;N2

� �
: ð17Þ



208 K. Renee Fister et al. / Mathematical Biosciences 244 (2013) 201–212
4.1.1. No insecticide with no sterile mosquito release
We begin by considering the interaction of wild and sterile

mosquitoes in the absence of insecticide, a ¼ 1 and without
additional release of sterile insects, s ¼ 0. In this case J0 ¼R T

0 Bþ uðtÞdt which amounts to minimizing the total number of
mosquitoes in the absence of control variables.

In Fig. 1, we see that the wild mosquito population reaches a
carrying capacity, while the sterile mosquito population rapidly
decays to zero in the absence of additional sterile mosquito release.
4.1.2. No insecticide with sterile mosquito release
We now allow sterile mosquito release in the absence of insec-

ticide, a ¼ 1 and N1 6 s 6 N2. In Fig. 2, we see that the wild mos-
quito population is eliminated by a short release of sterile
mosquitoes. In Fig. 3, we see that the wild mosquito population
is eliminated by a short constant release of sterile mosquitoes.
Once the wild mosquitoes have been eliminated, the introduction
of the sterile mosquitoes should be discontinued, allowing the ster-
ile population to die. Further simulations with higher values of N1

and N2 yielded a more rapid elimination of the wild mosquitoes
but led to a high carrying capacity for the sterile mosquitoes. We
note that we encountered convergence issues with our algorithm
for small N1 and that the wild mosquito population was eradicated
only when N1 was sufficiently large.
4.1.3. Insecticide with no sterile mosquito release
We now allow the use of insecticide in the absence sterile mos-

quito release, M1 6 a 6 M2 and s ¼ 0. In Figs. 4 and 5, we see that
the wild mosquito population is eliminated through maximal use
of insectide.
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Fig. 6. Objective functional J0 with B ¼ 1, bounds 0 6 aðtÞ 6 1, 0 6 sðtÞ 6 1, initial
conditions u0 ¼ 5, w0 ¼ 5 over the time interval ½0;10�.
4.1.4. Mixture of strategies
We now allow sterile mosquito release with the use of insecti-

cide, M1 6 a 6 M2 and N1 6 s 6 N2. In Figs. 6 and 7, we see that
both the wild and sterile mosquito populations are eliminated by
a moderate release of sterile mosquitoes. We note that in the initial
absence of sterile mosquitoes, the sterile population increases be-
fore decreasing to zero.

Furthermore, we varied B in this case to allow determine if the
insecticide was more (large B) or less (small B) important than the
sterile release. An interesting consequence of the formulation of a�

is that, since M1 P 0, the value of B becomes relevant only when
k1 < 0 which was not the case for any parameter set we
considered.

4.2. CASE 2: objective functional J1

With the objective functional

J1ða; sÞ ¼
Z T

0
ðBa2 þ sþ uÞdt;

we seek to simultaneously reduce the fecundity of the wild
mosquitoes by minimizing the nonlinear cost a2 of the Holling II
reproductive term a for the wild mosquitoes, the total number of
sterile mosquitoes s and the total number of wild mosquitoes u
present over the time inverval ½0; T�.

Recall that for this objective functional and the bounds
M1 6 aðtÞ 6 M2; N1 6 sðtÞ 6 N2, the optimal controls are given by

a�ðtÞ ¼min max M1;�
k1u2

2Bð1þ uþwÞ

� �
; M2

� �
ð18Þ

and
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Fig. 7. Objective functional J0 with B ¼ 1, bounds 0 6 aðtÞ 6 1, 0 6 sðtÞ 6 1, initial
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Fig. 8. Objective functional J1 with B ¼ 1, aðtÞ ¼ 1, 0:8 6 sðtÞ 6 1, initial conditions u0 ¼ 5, w0 ¼ 5 over the time interval ½0;10�.
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s�ðtÞ ¼
N1 if W > 0
N2 if W < 0
singular if W ¼ 0:

8><>: ð19Þ

where W is the switching function

W ¼ @H
@s
¼ 1þ k2:

The model or state variables u, w and the adjoint variables k1, k2 sat-
isfy the optimality system (11)–(15).
4.2.1. No insecticide with no sterile mosquito release
We note that for a ¼ 1 and s ¼ 0, we have J1 ¼

R T
0 Bþ uðtÞdt

which is the same as J0 for this case. Hence, the behavior of the
system is identical to that shown in Fig. 1.
4.2.2. No insecticide with sterile mosquito release
Again, we allow sterile mosquito release in the absence of insec-

ticide, a ¼ 1 and N1 6 s 6 N2. We encountered substantial conver-
gence issues for large T in this case. We note that if 1þ k2 – 0, then
the control s is not singular. For most examples considered, this
meant that s� ¼ N1 as in Fig. 8 and 9. In both cases, the wild
mosquito population is eliminated by a short release of sterile
mosquitoes. The sterile mosquito population is increased and the
wild mosquito population is eradicated only when N1 is sufficiently
large.

We present one example in Fig. 10 where 1þ k2 ¼ 0. In this
case, the value of s� switched from the upper bound of N2 to the
lower bound of N1. This is known as a bang-bang control.
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Fig. 10. Objective functional J1 with B ¼ 1, aðtÞ ¼ 1, 0:8 6 sðtÞ 6 1,
4.2.3. Insecticide with or without sterile mosquito release
We now allow the use of insecticide in the presence or absence

of sterile mosquito release, M1 6 a 6 M2 and N1 6 s 6 N2 or s ¼ 0.
Identical results were obtained with or without sterile insect re-
lease. In Figs. 11 and 12, we see that the wild mosquito population
is eliminated through maximal use of insecticide a� ¼ 0 and mini-
mal use of sterile mosquito release s� ¼ 0.

We note that variation of B is not important for J1 because the
control a� is the same as for J0.

5. Discussion

This paper describes an optimal control approach to mosquito
population reduction. Our mosquito model is somewhat unusual
in that we model the reproductive term using a Holling-II functional
response, [24,15]. The advantage of this is that it allows us to simul-
taneously model the mating dynamics of both small and large pop-
ulations. Overall, the behavior of the optimal control model is as
we expected. We have demonstrated that it is possible, through opti-
mal choices of insecticide use (or habitat modification) and/or sterile
insect release, to eliminate the wild mosquito population. We
considered several different scenarios combining the use of insecti-
cide with the release of sterile mosquitoes, under two different
objective functionals, J0ða; sÞ ¼

R T
0 ðBa2 þ s2 þ uÞdt and J1ða; sÞ ¼

R T
0

ðBa2 þ sþ uÞdt. The differences in the objective functional amount
to the inclusion of a nonlinear term relating to the release of sterile
mosquitoes into the environment. The mathematical effect results
in the inclusion of a possible singular control for J1.

In the absence of insecticide or sterile insect release, the wild
mosquitoes will reach a carrying capacity, while the sterile insect
population will decay to zero. In the absence of insecticide but in
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Fig. 11. Objective functional J0 with B ¼ 1, bounds 0 6 aðtÞ 6 1, 0 6 sðtÞ 6 1, initial
conditions u0 ¼ 5, w0 ¼ 5 over the time interval ½0;10�.
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Fig. 12. Objective functional J0 with B ¼ 1, bounds 0 6 aðtÞ 6 1, 0 6 sðtÞ 6 1, initial
conditions u0 ¼ 5, w0 ¼ 0 over the time interval ½0;10�.
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the presence of sterile insect release, J0 implies that the optimal ap-
proach is to use a short burst of mosquito release to eliminate the
wild mosquitoes. For J1, the optimal approach is to use constant
sterile insect release at the minimal level allowed by the lower
bound on s. In the absence of sterile insect release but in the pres-
ence of insecticide, J0 implies that the optimal approach is to use
maximal insecticide levels a ¼ 0.

When both insecticide and sterile insect release is allowed, the
optimal approach for both functionals is to force maximal insecti-
cide use. We note that the algorithm was quite sensitive to the
bounds on a and s. Our existence and uniqueness results imply that
the solutions exist for small T, but convergence was an issue in
some cases. For J0 the sterile release must be longer, albeit at lower
levels, than in the absence of insecticide. For J1, the possibility of a
singular control cannot be ignored. We note that if the second ad-
joint variable satisfies 1þ k2 ¼ 0, then the control s is singular. We
found only one example where that was the case. In the absence of
singular control, the optimal approach is maximize the use of
insecticide while minimizing the sterile release.

The effect of the initial condition, w0 for the sterile mosquitoes
cannot be ignored. When w0 ¼ 0, a higher rate of sterile instect
release was needed at the beginning of the control period, with
an eventual drop to the lower bound.

Overall, our findings are that if insecticide is allowed, it should
be used at a maximal level a ¼ 0, and that a combination of the
techniques leads to a more rapid elimination of the wild mosquito
population. Other authors have found similar results using models
that incorporated male–female interactions [8,40] or that linked
their model to the epidemiology of a particular disease [1,6,7].
Dumont and Tcheuenche [7] found that the R0 of a disease could
be reduced through a combination of periodic sterile insect release
and habitat modification. Their work did not incorporate optimal
control and to do so in the context of a periodic sterile insect re-
lease would require the use of delay differential equations. This
open question is one we intend to pursue.

Although some papers apply optimal control, to our knowledge,
this has not been done in a bounded context with a more rigorous
proof of existence and uniqueness of the optimal control. Further-
more, the Holling II function that we choose to model the repro-
ductive rate of the wild mosquitoes is used only by [24]. This
particular function captures the dynamics of both small and large
mosquito populations and is crucial as we seek to reduce the wild
mosquito population.
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Appendix A

Theorem 7.1 (Filippov–Cesari theorem [14,37]). Consider the
following optimal control problem:

min J ¼
Z T

0
FðxðtÞ;uðtÞ; tÞdt þ SðxðTÞ; TÞ;

_xðtÞ ¼ f ðxðtÞ;uðtÞ; tÞ; xð0Þ ¼ x0; gðxðtÞ;uðtÞ; tÞP 0;
hðxðtÞ; tÞP 0; aðxðTÞ; TÞP 0 bðxðTÞ; TÞ ¼ 0
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where T is free on ½0; tf �. Assume that F, f, g, h, S, a, and b are continuous
in all their arguments at all points ðx; u; tÞ. Define the (state-dependent)
control region

Xðx; tÞ ¼ fu 2 Rmj gðx;u; tÞP 0g � Rm

and the set

Uðx; tÞ ¼ fðFðx;u; tÞ þ c; f ðx;u; tÞÞj c 6 0;u 2 Xðx; tÞg � Rnþ1

where m and n are the number of control and state variables,
respectively.

Suppose that the following conditions hold:

1. There exists an admissible solution pair.
2. Uðx; tÞ is convex for all ðx; tÞ 2 Rn � ½0; tf �.
3. There exists d > 0 such that kxðtÞk < d for all admissible
fxðtÞ;uðtÞg and t.

4. There exists d1 > 0 such that kuk < d1 for all u 2 Xðx; tÞ with
kxk < d.

Then there exists an optimal triple fT�; x�;u�g with u�ð�Þ measurable.
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