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Identification of a chemotactic sensitivity in a coupled system
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Chemotaxisis the process by which cells behave in a way that follows the chemical gradient. Appli-
cations to bacteria growth, tissue inflammation and vascular tumours provide a focus on optimization
strategies. Experiments can characterize the form of possible chemotactic sensitivities. This paper ad-
dresses the recovery of the chemotactic sensitivity from these experiments while allowing for non-linear
dependence of the parameter on the state variables. The existence of solutions to the forward problem is
analysed. The identification of a chemotactic parameter is determined by inverse problem techniques.
Tikhonov regularization is investigated and appropriate convergence results are obtained. Numerical
results of concentration-dependent chemotactic terms are explored.
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1. Introduction

Biological and ecological research has investigated cell migration. To model cell migration, studies
have been composed to include migration, diffusion, haptotaxis and chemotaxis (Keller & Segel, 1970,
1971a,b;Keller, 2006;Oster & Murray,1989;Andersonet al.,2000;Anderson & Chaplain,1998;Dung,
2002). In this paper, the focus is chemotaxis. Chemotaxis describes the movement of an organism and/or
groups of cells that either move towards or away from a chemical or sensory stimulus. In the early work
by Keller & Segel(1970), chemotactic responses of amoebae to bacteria are studied in a cellular slime
mould. Bacterial chemotaxis, which describes the ability of bacteria to move towards increased or de-
creased concentrations of attractants, is analysed at the macroscopic level through a microscopic model
of individual cells (Erban & Othmer, 2004;Segel, 1977). It was first observed byEngelmann(1881).
For example, ifSalmonella typhimurium, a strain of salmonella associated with meat and poultry prod-
ucts, is introduced to a petri dish filled with a nutrient, the bacteria will migrate outwards, consuming
the nutrient. As they consume the nutrient, they secrete a chemoattractant. After several days, the bac-
teria will have clustered in the areas of high chemical concentration. A structure of concentric rings is
usually observed experimentally. The work byChet & Mitchell (1976) describes patterns formed from
Escherichia colimovement towards amino acids.Allweiss et al. (1977) investigateVibrio cholerae
which are inhibited by a pepsin digest that reduces the possibility of the vibrios attaching to the in-
testinal wall. Other authors (Fisher & Lauffenburger, 1990;Alt & Lauffenburger, 1985) have addressed
chemotaxis in immune cell motility which when combined with tumour morphology is hoped to provide
new avenues of treatment strategies. In addition, authors have analysed chemotactic responses in ecol-
ogy (Lapidus,1980) and investigated mathematical issues for the existence of global solutions in mul-
tiple dimensions (Kowalczyk, 2005;Herrero & Veĺazquez,1996;Hillen & Levine, 2003;Childress &
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Percus, 1981; Chalub & Kang,2006; Aida & Yagi, 2003; Jabbarzadeh & Abrams,2005; Senba &
Suzuki,2002a,b;Horstmann,2002;Gajewski & Skrypnik,2003).

Chemotaxis also arises in a variety of medical applications. In particular, it has been studied in
connection with myxobacteria (Sliusarenkoet al.,2006;Tosinet al.,2006), leukocyte mobility in tissue
inflammation (Alt & Lauffenburger, 1985), the migration of tumour cells towards bone (Orr et al., 1979)
and other issues in morphogenesis (Maini & Othmer, 2001). Another interesting problem involves the
study of vascular tumours through angiogenesis. Angiogenesis involves the formation of capillary net-
works of blood vessels that are vital for the growth of tumours. Mathematical modelling of angiogenesis
(Andersonet al., 2000;Anderson & Chaplain,1998;Bellomo & Preziosi,2000;Corriaset al., 2003;
Hillen & Painter, 2001;Levineet al.,2001;Orr et al.,1979;Painter & Hillen, 2002;Sleeman & Levine,
2001;Velazquez,2004a,b) has given new insight into tumour structure. Normal tissue, lymphocytes and
other types of cells grow at the tumour site or are recruited through chemotaxis. The need to identify
the nature of this recruitment is at the heart of this paper. The identification of a chemotactic term falls
under the umbrella of an inverse problem. In principle, we can measure certain characteristics of the tu-
mour concentration and use mathematical techniques to recover the chemotactic term, in particular the
chemotactic sensitivity, that is driving the tumour growthGatenbyet al. (2002). To our knowledge, this
‘inverse problem’ approach has only been used in the analysis of chemotaxis models byDolak-Struß &
Kügler(preprint) under the assumption that the chemical concentration is explicitly known.

Since there are many applications in which chemotaxis arises, there are also different models of
the chemotactic effect. There have been many different expressions proposed that model chemotactic
velocity, seeKeller & Segel(1971b),Lapidus & Schiller(1976),Ford & Lauffenburger(1991) and
Tysonet al. (1999). This velocity is used in a bacterial conservation equation in the formulation of a
system of partial differential equations that govern the particular application. The chemotactic sensi-
tivity determines the velocity. Our goal is to develop a technique whereby the appropriate chemotactic
sensitivity model, and hence chemotactic velocity, can be determined from available data. In particular,
we consider a system of partial differential equations that was developed byOster & Murray(1989) to
model the pattern formation of cartilage condensation in a vertebrate limb bud. A similar system was
studied byMyerscoughet al.(1998). The numerical solution of similar systems was recently studied by
Tysonet al. (2000) andNakaguchi & Yagi(2001). Work byFister & McCarthy(2003) has shown that
the system of partial differential equations can in fact be controlled theoretically through the introduc-
tion of a mechanism controlling the number of cells being generated. Simulations provide optimal drug
treatment programs for patients to facilitate the rebuilding of cartilage or the reduction of cancerous tu-
mours. The chemotactic sensitivity inFister & McCarthy(2003) was known and the control parameter
was a harvesting term. Our goal in this work is to ‘identify’ the chemotactic sensitivity.

The paper is organized into six sections. In Section2, the existence of the forward problem is proven.
In Section3, identifiability of the chemotactic sensitivity is established using the weak formulation of the
state problem. In Section4, Tikhonov regularization is used to approximate the solution through the use
of minimization arguments. The rate of convergence of the approximate minimizer of the chemotactic
sensitivity to the true parameter follows next. In Section5, numerical experiments provide graphical
depictions of the accuracy of the recovery of the parameter. In Section6, concluding remarks are made.

2. Forward problem

In this model,u(x, t) and c(x, t) represent the concentration of the cells and the chemoattractant,
respectively. The cells and the chemoattractant are governed by a convection–diffusion equation and
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a reaction–diffusion equation as

ut = M1u − ∇ ∙ (χ(u, c)u∇c) in Ω × (0,T),

ct = D1c +
bu

u + h
− μc,

u(x, 0) = u0(x), c(x, 0) = c0(x), for x ∈ Ω,

∂u

∂ν
=

∂c

∂ν
= 0 on∂Ω × (0,T), (1)

whereν is the outward unit normal.M and D represent the diffusion coefficients of the cells and the
chemoattractant. The Michaelis–Menten term,bu

u+h , represents a response of the chemoattractant to a
maximum carrying capacity or saturation rate, assumingb, h > 0. We incorporate a decay term whereμ
denotes the degradation rate. We assume that there is no flux of the concentrations across the boundary
and that the initial concentrations for the cells and chemoattractant areu0(x) andc0(x), respectively.

Here,χ(u, c) is the chemotactic sensitivity which monitors the chemical gradient attraction of the
cells. It is this term that we seek to identify. InOster & Murray(1989),Myerscoughet al. (1998)
and Fister & McCarthy(2003), the termχ(u, c) is simply a constant. More generally,χ(u, c) is a
linear function ofu in Velazquez(2004a,b),Hillen & Painter(2001) andPainter & Hillen(2002), while
in Keller & Segel(1970,1971b),Lapidus & Schiller(1976),Ford & Lauffenburger(1991) andTyson
et al. (1999) it is a non-linear function ofc. We assume henceforth that the chemotactic sensitivity has
the formχ(u, c) = a(c) and is a bounded function. We restrict our analysis to the dimensionless system

ut = M1u − ∇ ∙ (a(c)u∇c) in Ω × (0,T),

ct = D1c +
u

u + 1
− c,

u(x, 0) = u0(x), c(x, 0) = c0(x), for x ∈ Ω,

∂u

∂ν
=

∂c

∂ν
= 0 on∂Ω × (0,T). (2)

We will establish a technique for the identification ofa(c) ∈ A, where

A=

{

a ∈ H1(I ):

∥
∥
∥
∥
∂a

∂c
(c1) −

∂a

∂c
(c2)

∥
∥
∥
∥

L2(I )
6 K‖c1 − c2‖L2(I )

}

.

Observe that, with the available data, we can only expect to recovera(c) on the intervalI = [cmin, cmax].
The Lipschitz condition on the derivative of the chemotactic parameter is quite reasonable, since the
chemotactic parameter has a rate of change that is bounded for bacteria growth (Ford & Lauffenburger,
1991).

In order to prove identifiability and to establish the rate of convergence to our method, we will need
to establish existence of a solution of (2). Using the standard notationHk(Ω) to represent the Sobolev
spaceWk,2(Ω), let Hk+θ (Ω) denote the intermediate space betweenHk(Ω) and Hk+1(Ω) for any
0 < θ < 1. Let D be an interval in [0, ∞). The spaceL p(D; X) is theL p spaceof measurable functions
in D with values in the Banach spaceX. The spaceCm(D; X), m = 0,1,2, . . ., is the space ofm-times
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218 K. R. FISTER AND M. L. MCCARTHY

continuouslydifferentiable functions inD with values inX, while the spaceCθ (D; X), 0 < θ < 1, is
the space of Ḧolder-continuous functions inD with values inX.

THEOREM 2.1 If u0, c0 ∈ H1+ε(Ω) for 0 < ε 6 1 andu0(x) > 0, c0(x) > c0 > 0 on Ω, then a real
unique local solutionu, c of (2) exists on an interval [0,T ] such that

u, c ∈ Cη([0, ∞); H1+ε1(Ω)) ∩ C([0, T); H2(Ω)) ∩ C1([0, T); L2(Ω))

with 0 < ε1 < min
(
ε, 1

2

)
and0 < η < min

( ε−ε1
2 , 1−2ε1

4

)
. The solution satisfies the lower bounds

u(x, t) > 0, c(x, t) > c0 e−t on [0, T ].

Proof. Let X = L2(Ω) × L2(Ω) andZ = H1+ε(Ω) × H1+ε(Ω). The system (2) can be formulated as
an abstract quasilinear equation

dv

dt
+ A(v)v = f (v), 0 < t < ∞,

v(0)= v0

on the Banach spaceX.
Let

v =
(

u
c

)
, v̂ =

(
û
ĉ

)
, v0 =

(
u0
c0

)
.

Clearlyv0 ∈ Z.
We defineA(v) to be the linear operator inX such that

A(v)v̂ = ∇ ∙
(

−M a(c)u
0 −D

)(
∇û
∇ĉ

)
+
(

M 0
0 1

)(
û
ĉ

)

with domain

D(A(v)) =
{
v̂ ∈ H2(Ω) × H2(Ω);

∂û

∂n
=

∂ ĉ

∂n
= 0 on ∂Ω

}
.

Let the vectorf (v) be the function

f (v) =
(

Mu
u

u+1

)
.

Since f (v) is Lipschitz, application of Yagi’s work (Yagi,1997, Theorems 2.1 and 3.4) yields our result.
(See Appendix A for statements of Yagi’s results.) �

We also note thatHorstmann(2001) provides a related result for a constanta and a Michaelis–
Menton chemical production term via using Lyapunov functions to develop a global existence result.

3. Inverse problem statement and identifiability

In this section, we begin by establishing the identifiability of the parametera(c) from the available data
u(x, t) andc(x, t) almost everywhere inW = L2((0,T), H1(Ω)). Note that, in order for chemotaxis

 by guest on O
ctober 3, 2011

im
am

m
b.oxfordjournals.org

D
ow

nloaded from
 

http://imammb.oxfordjournals.org/


IDENTIFICATION OF A CHEMOTACTIC SENSITIVITY IN A COUPLED SYSTEM 219

to be observed biologically, cells must be present and a chemical gradient must exist. This means that
u(x, t) and∇c(x, t) must be non-zero for a measurable subset ofΩ × (0,T).

We denote by(ua, ca) and(ub, cb) thesolution pairs of (2) with chemotactic sensitivitiesa(c) and
b(c), respectively.

THEOREM 3.1 Let (ua, ca) and(ub, cb) bothbe solutions inW × W of the direct problem (2) corre-
sponding toa(ca) andb(cb). If ua = ub andca = cb almosteverywhere inΩ×[0, T ], thena(c) = b(c).

Proof. We consider the weak form of the first equation of the direct problem (2) for (ua, ca) and(ub, cb)
andsubtract them:

∫ T

0

∫

Ω

∂

∂t
(ua − ub)φ dt dx + M

∫ T

0

∫

Ω
(∇(ua − ub))∇φ dx dt

= −
∫ T

0

∫

Ω
[a(ca)ua∇ca − b(cb)ub∇cb]∇φ dx dt.

Sinceua(x, t) = ub(x, t) andca(x, t) = cb(x, t) almosteverywhere, this reduces to

∫ T

0

∫

Ω
[a(ca) − b(ca)]ua∇ca∇φ dx dt = 0.

By definition, if φ is in W = L2((0,T); H1(Ω)), then we can chooseφ(x, t) = ca(x, t). Hence,

∫ T

0

∫

Ω
[a(ca) − b(ca)]ua (∇ca)

2 dx dt = 0.

Our existence result, Theorem2.1, says thatua > 0. We also employ our biological assumptions that
ua 6= 0 and∇ca 6= 0 on a measurable subset ofΩ × (0,T). Thus,

a(c) = b(c)

almost everywhere. �

4. Output least squares and Tikhonov regularization

We wish to identify a functiona(c) ∈ A from noisy measurements(zu, zc) of (ua, ca). Recall that

A=

{

a ∈ H1(I ) :

∥
∥
∥
∥
∂a

∂c
(c1) −

∂a

∂c
(c2)

∥
∥
∥
∥

L2(I )
6 K‖c1 − c2‖L2(I )

}

,

whereI = [cmin, cmax].
We define

F(a) ≡ (ua(x, t), ca(x, t)) (3)

with

F : A→ W × W.
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220 K. R. FISTER AND M. L. MCCARTHY

In the presence of perfect data(zu, zc), we would solve the non-linear ill-posed problem

F(a0) = (zu, zc), (4)

where(ua0, ca0) is the solution of the direct problem witha = a0. To do this, using Tikhonov regular-
ization would involve approximating the solution by minimizing

min
a∈A

‖F(a) − (zu, zc)‖
2
W×W + α‖a − a∗‖2

L2(I ), (5)

whereα > 0 is a small parameter anda∗ is ana priori guess of the true solutiona0. In real applications,
measurement errors mean that exact data are not available. Noisy data are assumed to have an error level
δ, which means that

∫ T

0
‖u − zδ

u‖2
L2(Ω)

dt 6 δ2,

∫ T

0
‖c − zδ

c‖
2
L2(Ω)

dt 6 δ2, (6)

whereu andc arethe true cell and the chemical concentrations associated with the chemotactic sen-
sitivity a0, and zδ

u and zδ
c are the noisy measurements of the cell and the chemical concentrations,

respectively.
We assume attainability of a true solution, i.e. if(zu, zc) ∈ W × W, there exists aa0 ∈ A suchthat

F(a0) = (zu, zc). (7)

In the presence of noisy data(zδ
u, zδ

c), theminimizeraδ
α ∈ A of (5) minimizes

Jα(a) ≡ ‖F(a) − (zδ
u, zδ

c)‖
2
W×W + α‖a − a∗‖2

L2(I )

=
∫ T

0
‖u − zδ

u‖2
L2(Ω)

dt +
∫ T

0
‖c − zδ

c‖
2
L2(Ω)

dt + α‖a − a∗‖2
L2(I ) (8)

for appropriate choices ofa ∈ A andα.
We begin by establishing the weak-closedness of the mapF(a).

THEOREM 4.1 If an ⇀ a∗ ∈ A, thenuan ⇀ ua∗ andcan ⇀ ca∗ in W.

Proof. Here, we give the outline of the proof and refer the reader toFisteret al. (2006) for details.
Using that the solution to the state system (2) is unique, one can defineuan = u(an) andcan = c(an).
A transformation involving e−λt timeseach component of the solution pair is made withλ to be chosen
in order to obtain the boundedness of the solution inW. The weak definition of the solution associated
with the transformeduan andcan in (3) is analysed via Cauchy’s inequality and the boundedness of the
coefficients. Using the boundedness (independent ofn) of the solution pairs, subsequences are extracted
that converge weakly tou∗ andc∗. Lastly, comparison results (Simon,1987) are used so that one can
pass to the limit in the weak formulation of the solution to show thatu∗ = ua∗ andc∗ = ca∗. �

COROLLARY 4.1 For any data(zδ
u, zδ

c) ∈ W × W, a minimizeraδ
α of (8) exists.

This is true because the existence of a minimizeraδ
α follows from the lower semicontinuity ofJα(a).

In the following corollary, we give a result that highlights the continuous dependence on the data.

COROLLARY 4.2 For fixedα, the minimizers depend continuously on the data(zδ
u, zδ

c). If α(δ) satisfies

α(δ) → 0, δ2/α(δ) → 0 asδ → 0,
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then

lim
δ→0

‖aδ
α − a0‖L2(I ) = 0.

Theresult follows from standard results inSeidman & Vogel(1989) that prove the continuous depen-
dence on the data(zδ

u, zδ
c) for fixed α, and the convergence ofaδ

α towards the true parametera0 asthe
noise levelδ and the regularization parameterα go to zero. As the noise levels converge to zero, we
obtain the optimal result. Essentially, with this infinite set of data, the minimum is achieved and the
corresponding sensitivities converge as the noise goes to zero.

4.1 Convergence rate analysis

Although we have noted (without proof) the convergence of the minimizeraδ
α to the true parameter

a0, the rate of convergence may be arbitrarily slow. We wish to determine a source condition that will
guarantee a certain rate of convergence. Even when our regularization parameterα is comparable to our
noise levelδ, such a source condition will require assumptions involvingu anda0 − a∗.

Recallthat we seek to solve the non-linear problem (4), F(a) = (zu, zc), whereF(a) ≡ (ua, ca).
The true solution isa0, anda∗ is an a priori guess. In order to apply the theory ofEngl et al. (1989,
2000), we must establish the following:

• F is Frechet differentiable,

• F ′ is Lipschitz with‖F ′(a) − F ′(b)‖ 6 γ ‖a − b‖,

• thereexistsw ∈ L2((0,T); H1(Ω)) satisfying the source conditiona0 − a∗ = F ′(a0)∗w,

• γ ‖w‖ < 1.

In practice, although computingF ′ and (F ′)∗ is not difficult, it can be quite tricky to establish the
Lipschitz condition onF ′ with our system of coupled non-linear partial differential equations. Instead,
our approach involves developing a ‘source condition’ without imposing differentiability constraints
on F . Thus, we establish O(

√
δ) convergence. This technique is also found in the work ofEngl &

Kügler(2002).

THEOREM 4.2 Suppose that there exists a functionw ∈ L2((0,T); H1(Ω)) satisfying

w(x, 0) = w(x, T) = 0, 1w ∈ L2((0,T); L2(Ω))

such that for anyΨ ∈ A,

〈a0 − a∗, Ψ 〉L2(I ) =
∫ T

0

∫

Ω
Ψ (ca0)ua0∇ca0 ∙ ∇w dx dt.

If α ∼ δ, then
∫ T

0

∥
∥
∥uaδ

α
− zδ

u

∥
∥
∥

2

L2(Ω)
+
∥
∥
∥caδ

α
− zδ

c

∥
∥
∥

2

L2(Ω)
dt = O(δ2)

and

‖a0 − aδ
α‖L2(I ) = O(

√
δ).

Proof. For clarity, we briefly describe the techniques used in this proof. Using that a minimizer to
Jα(a) exists, we obtain an upper bound in terms of the error levelδ and the norm of the difference in
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the minimizer and optimala values. We then use our source condition with the weak formulation of
the cell and the chemical differential equations to obtain a representation of the inner product of the
appropriate differences of the approximating minimizers. This allows us to boundJα(a). Specifically,
we use triangle and Young’s inequalities to bound the time and spatial derivatives of the differences
in the state variables. Integration by parts and Hölder’s inequality enable us to successfully bound the
spatial derivatives of the states in terms of the states themselves. Using the assumptions fromA and
choosingε sufficiently small, we can obtain the error of order

√
δ with α ∼ δ.

Sinceaδ
α is a minimizer ofJα(a), we haveJα(aδ

α) 6 Jα(a0). Using our definition of noise level (6),
we find that

∫ T

0

∥
∥
∥uaδ

α
− zδ

u

∥
∥
∥

2

L2(Ω)
+
∥
∥
∥caδ

α
− zδ

c

∥
∥
∥

2

L2(Ω)
dt + α‖aδ

α − a∗‖2
L2(I )

6
∫ T

0
‖ua0 − zδ

u‖2
L2(Ω)

+ ‖ca0 − zδ
c‖

2
L2(Ω)

dt + α‖a0 − a∗‖2
L2(I )

6 2δ2 + α‖a0 − a∗‖2
L2(I ). (9)

Addingα‖a0 − aδ
α‖2

L2(I )
to both sides of the inequality and using inner product properties yield

∫ T

0

∥
∥
∥uaδ

α
− zδ

u

∥
∥
∥

2
+
∥
∥
∥caδ

α
− zδ

c

∥
∥
∥

2
dt + α‖a0 − aδ

α‖2
L2(I )

6 2δ2 + 2α〈a0 − a∗, a0 − aδ
α〉L2(I ). (10)

Observe that our source condition

〈a0 − a∗, Ψ 〉L2(I ) =
∫ T

0

∫

Ω
Ψ (ca0)ua0∇ca0 ∙ ∇w dx dt

with Ψ = a0 − aδ
α, together with the weak forms of the cell equation in the forward problem (2) for

a0 andaδ
α, is

〈a0 − a∗, a0 − aδ
α〉L2(I ) =

∫ T

0

∫

Ω

(
ua0 − uaδ

α

)

t
w dx dt +

∫ T

0

∫

Ω
∇
(
ua0 − uaδ

α

)
∙ ∇w dx dt

+
∫ T

0

∫

Ω

[
aδ
α

(
caδ

α

)
uaδ

α
∇caδ

α
− aδ

α(ca0)ua0∇ca0

]
∙ ∇w dx dt

and (10) becomes
∫ T

0

∥
∥
∥uaδ

α
− zδ

u

∥
∥
∥

2

L2(Ω)
+
∥
∥
∥caδ

α
− zδ

c

∥
∥
∥

2

L2(Ω)
dt + α‖a0 − aδ

α‖2
L2(I )

6 2δ2 + 2α

∫ T

0

∫

Ω

(
ua0 − uaδ

α

)

t
w dx dt + 2αM

∫ T

0

∫

Ω
∇
(
ua0 − uaδ

α

)
∙ ∇w dx dt

+ 2α

∫ T

0

∫

Ω

[
aδ
α

(
caδ

α

)
uaδ

α
∇caδ

α
− aδ

α(ca0)ua0∇ca0

]
∙ ∇w dx dt. (11)
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We bound each integral in (11) separately using triangle and Young’s inequalities. We find that

|I1| =

∣
∣
∣
∣α
∫ T

0

∫

Ω

(
ua0 − uaδ

α

)

t
w dx dt

∣
∣
∣
∣

6 ε

∫ T

0

∥
∥
∥uaδ

α
− zδ

u

∥
∥
∥

2

L2(Ω)
dt +

α2

2ε

∫ T

0
‖wt‖

2
L2(Ω)

dt + εδ2

and

|I2| =

∣
∣
∣
∣αM

∫ T

0

∫

Ω
∇
(
ua0 − uaδ

α

)
∙ ∇w dx dt

∣
∣
∣
∣

6 εM2δ2 +
α2

2ε

∫ T

0
‖1w‖2

L2(Ω)
dt + εM2

∫ T

0

∥
∥
∥uaδ

α
− zδ

u

∥
∥
∥

2

L2(Ω)
dt,

whereε isan arbitrary parameter resulting from the use of Young’s inequality. We utilize the assumptions

η1 6
∂a

∂c
6 η̂1,

∥
∥
∥
∥
∂a

∂c
(c1) −

∂a

∂c
(c2)

∥
∥
∥
∥

L2(Ω)

6 K‖c1 − c2‖L2(Ω),

Green’s theorem, the boundary conditions and Hölder’s inequality to obtain the estimate

|I3| =

∣
∣
∣
∣α
∫ T

0

∫

Ω

[
aδ
α

(
caδ

α

)
uaδ

α
∇caδ

α
− aδ

α(ca0)ua0∇ca0

]
∙ ∇w dx dt

∣
∣
∣
∣

6 ε

[
η̂2

1

∫ T

0

∥
∥
∥uaδ

α
− zδ

u

∥
∥
∥

2

L2(Ω)
dt + ‖u‖2

L∞(Ω)K
2
∫ T

0

∥
∥
∥caδ

α
− zδ

c

∥
∥
∥

2

L2(Ω)
dt

]

+
α2

ε

∫ T

0
‖1w‖2

L2(Ω)
dt + εη̂2

1δ
2 + ε‖u‖2

L∞(Ω)K
2δ2

+ ε‖∇u‖2
L∞(Ω)K

2
∫ T

0

∥
∥
∥caδ

α
− zδ

c

∥
∥
∥

2

L2(Ω)
dt + εη̂2

1μ
2
∫ T

0

∥
∥
∥uaδ

α
− zδ

u

∥
∥
∥

2

L2(Ω)
dt

+
α2

ε

∫ T

0
‖∇w‖2

L2 dt + ε‖∇u‖2
L∞(Ω)K

2δ2 + εη̂2
1μ

2δ2.

Groupingterms and relabelling constants, we have
∫ T

0

∥
∥
∥uaδ

α
− zδ

u

∥
∥
∥

2

L2(Ω)
+
∥
∥
∥caδ

α
− zδ

c

∥
∥
∥

2

L2(Ω)
dt + α‖a0 − aδ

α‖2
L2(I )

6 2δ2 + 2C1εδ
2 + 2εC2

∫ T

0

∥
∥
∥uaδ

α
− zδ

u

∥
∥
∥

2

L2(Ω)
dt

+ 2εC3

∫ T

0

∥
∥
∥caδ

α
− zδ

c

∥
∥
∥

2

L2(Ω)
dt
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+
α2

ε

∫ T

0
(‖wt‖

2
L2(Ω)

+ 3‖1w‖2
L2(Ω)

+ 2‖∇w‖2
L2(Ω)

)dt.

If ε is chosen to be sufficiently small, then for the choicesα ∼ δ, we obtain

∫ T

0

∥
∥
∥uaδ

α
− zδ

u

∥
∥
∥

2

L2(Ω)
+
∥
∥
∥caδ

α
− zδ

c

∥
∥
∥

2

L2(Ω)
dt = O(δ2)

and

‖a0 − aδ
α‖L2(I ) = O(

√
δ). �

We have now determined a condition ona0 − a∗ thatguarantees a practical rate of convergence for our
regularization scheme. If we choose our regularization parameterα in such a way that it approaches
zero at the same rate as the noise levelδ, then our recovered chemotactic sensitivityaδ

α will approach
the true chemotactic sensitivitya0 ata rate proportional to

√
δ.

5. Numerical results

In order to demonstrate the effectiveness of Tikhonov regularization for this application, we consider
several examples.

All computations were carried out in MATLAB. The Tikhonov functional

Jα(a) =
∫ T

0

∫

Ω
(|u − zδ

u|2 + |c − zδ
c|

2)dx dt + α‖a − a∗‖2
L2(I ) (12)

was minimized using lsqnonlin, a MATLAB implementation of the Levenberg–Marquardt method with
line search (Levenberg, 1944;Marquardt,1963). Although it was not tractable to do so in the conver-
gence analysis, a gradient-based algorithm is appropriate here because computing the gradient and its
adjoint is straightforward.

We restrict our discussion toΩ = [0, 1]. Recall thatzδ
u andzδ

c representnoisy data anda∗ repre-
sentsana priori guess of the chemotactic sensitivitya. Cell and chemoattractant concentration data on
Ω = [0, 1] were generated using pdepe with high accuracy. During the computation ofJα(a), cell and
chemoattractant concentrationsu(x, t) andc(x, t) associated with a particulara were computed using
pdepe with moderate accuracy over coarser space and time meshes than those used to simulate data.

Since lsqnonlin requires objective functions of the form

1

2
‖F‖2

2 =
1

2

∑

k

f 2
k (x),

weapproximated the first two terms ofJα(a) by

M∑

j =1

{
N∑

i =1

[u(xi , t j ) − zu(xi , t j )]
2 +

N∑

i =1

[c(xi , t j ) − zc(xi , t j )]
2

}

(1x)(1t),

where xi = i (1x) for i = 0, . . . , N with 1x = 1/N and t j = j (1t) for j = 0, . . . , M with
1t = σ/M .
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We approximatea(c) by

a(c) =
L∑

k=1

akφk(c), (13)

whereφk arethe usual piecewise linear hat functions defined over a partition of [cmin, cmax]. Note that
any functiona(c) can be represented by its corresponding vectora. Since the values ofcmin andcmax
may vary considerably for eacha used during the optimization, we choose instead an interval that is
sufficiently large to include the range ofc for eacha considered by the algorithm. In practice, this
means making a guess and expanding the interval whenc leaves our chosen interval.

The penalty termα‖a − a∗‖2
A canbe replaced by

∥
∥
∥
∥
∥

L∑

i =1

(ai − a∗
i )φi

∥
∥
∥
∥
∥
A

= (a − a∗)>B(a − a∗),

wherethe components of the matrixB are given byBi j = (φi , φ j )A.
Various strategies for the choice of regularization parameters are discussed inVogel (2002). In each

of the following examples, we used an L-curve method to choose an optimal regularization parameterα.
Recall that our chemotaxis system is

ut = M1u − ∇ ∙ (a(c)u∇c) in Ω × (0,T),

ct = D1c +
bu

u + h
− μc,

u(x, 0) = u0(x), c(x, 0) = c0(x), for x ∈ Ω,

∂u

∂ν
=

∂c

∂ν
= 0 on∂Ω × (0,T). (14)

A similar system was used byMyerscoughet al.(1998) in their numerical simulations of chemotaxis in
limb bud development with parameters

M = 0.25, D = 1, a(c) = 2, h = 1, b = μ, u0 = 1 + ε(x), c0 = 0.5, Ω = [0, 1],

whereμ ∈ [0, 3000] andε(x) was a bounded perturbation function. In Examples 1–3, we used the
Myerscough parameters with

ε(x) = e−55(x−0.5)2, T = 0.25, b = μ = 50.

EXAMPLE 1 Consider the chemotactic coefficient used byMyerscoughet al. (1998)

a(c, u, x, t) = 2.

The cell and the chemoattractant concentrations associated with thisa are shown over the time interval
[0, 0.25] in Fig.1. An initial guess ofa = 1 was used. Thea priori guess was also chosen to bea∗ = 1.
Theparametera was recovered to within 1.461× 10−6 of the true value atT = 0.25.
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FIG. 1. Cell and chemical concentrations over time interval [0, 0.25] with a(c, u, x, t) = 2.

FIG. 2. Cell and chemical concentrations over time interval [0, 0.25] with a(c, u, x, t) = 2/c.

EXAMPLE 2 Keller–Segel model
We consider the non-linear chemotactic coefficient

a(c) = 2/c

proposed in the original Keller–Segel model for chemotaxis (Keller & Segel,1970). The cell and the
chemoattractant concentrations associated with thisa are shown in Fig.2.

From the data, we find that [cmin, cmax] = [0.1794,0.6398] whena(c) = 2/c. Since the optimization
algorithm will use approximations of other chemotactic functions, we attempt to reconstructa(c) over a
larger interval. We found the interval [0.1,0.7] to be sufficiently large to include the range ofc for each
a considered by the algorithm.

An initial guess ofa = 15(1 − c)2 was used. Thea priori guess was also chosen to bea∗ =
15(1 − c)2. Figure3 shows the chemotactic functiona and its recovery ofanoise with and without
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FIG. 3. True chemotactic coefficienta(c) = 2/c and its recovery with no regularization (left) and a regularization parameter of
α = 10−5.

FIG. 4. Cell and chemical concentrations over time interval [0, 0.25] with a(c, u, x, t) = 2/(1 + c)2.

regularization. A regularization parameter ofα = 10−5 was chosen by an L-curve method. Note that
the regularized recovery is quite reasonable over the interval [cmin, cmax] = [0.1794,0.6398] and that
its quality degrades, as expected, outside this interval.

EXAMPLE 3 Reaction kinetics model
A non-linear chemotactic coefficient

a(c) =
2

(1 + c)2

based on reaction kinetics was proposed bySegel(1977). The cell and the chemoattractant concentra-
tions associated with thisa are shown in Fig.4. From the data, we find that [cmin, cmax] = [0.5,0.5799]
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FIG. 5. True chemotactic coefficienta(c) = 2/(1+c)2 and its recovery with no regularization (left) and a regularization parameter
of α = 2.5 × 10−3.

whena(c) = 2/(1 + c)2. Once again, we attempt to reconstructa(c) over a larger interval. We found
the interval [0.48,0.6] to be sufficiently large to include the range ofc for eacha considered by the
algorithm.

An initial guess ofa = 1 was used. Thea priori guess was also chosen to bea∗ = 1. Figure5 shows
the chemotactic functiona and its recovery ofanoise with and without regularization. A regularization
parameter ofα = 2.5 × 10−3 was chosen by an L-curve method. Note that the regularized recovery
is quite reasonable over the interval [0.52,0.57] and that its quality degrades, as expected, outside this
interval.

Comments. The number of iterations used by the algorithm is quite sensitive to the choice of initial
functiona0 and the number of piecewise linear basis functions used in (13). For experimental data, we
must acknowledge that the quality of the recovery degrades with increased noise in the data. In certain
applications such as pattern formation inE. coli or S. typhimurium, seeTysonet al. (1999), the size
of the interval [cmin, cmax] is sometimes too small to give adequate information for the recovery of the
chemotactic coefficient. This can be avoided by taking a larger time interval [0, T ]. In numerical simu-
lations, this requires a careful choice of numerical method for the solution of the chemotaxis system, see
Tysonet al. (2000). An alternative approach is to restrict our measurements to a particular time, rather
than an interval of time. The efficacy of this approach will be discussed in a future paper.

6. Conclusions

In this work, we have explored a particular mathematical aspect of the chemotactic sensitivity within
the gradient. The identification of a chemotactic sensitivity with functional dependence has been deter-
mined. The interesting aspect of this work is that, to our understanding, no one has been able to capture
the chemotactic sensitivity information from limited data with dependence on the chemical in a system.
We have proven the existence of the state solutions in specific Sobolev spaces and formulated an inverse
problem. We have employed Tikhonov regularization to recover the chemotactic sensitivity from noisy
measurements. In doing so, a minimization problem is formed and the necessary convergence results
for an approximating minimizer to the true parameter are discussed.
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Anothersignificant result is that we have established a source condition that guarantees a particular
rate of convergence by imposing a Lipschitz condition on the derivative of the chemotactic sensitivity.
In practice, this is biologically reasonable, since the chemotactic sensitivity has a rate of change that is
bounded for bacterial growth (Ford & Lauffenburger, 1991).

Numerically, we have utilized models fromMyerscoughet al. (1998),Keller & Segel(1970) and
Segel(1977) for the studies of the comparison of our proposed work to the actual scenarios. With the
use of Tikhonov regularization, we have been able to recover the chemotactic sensitivity with reasonable
accuracy. We note that this method, which although gives us accurate results for the chosen recoveries,
may not be able to distinguish between similar chemical sensitivity forms. This paper does provide
an initial framework to address these studies and further investigations to discern the differences in
relative chemical sensitivities will follow. A biological benefit of this knowledge is the ability for one
to understand the growth associated with chemotaxis within tumour studies, leukocyte dynamics and
bacterial patterns based on the specific gradient information that can be recovered from imperfect data.
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Appendix A

For more thorough understanding of Theorem2.1, we include the parabolic problem convention
used inYagi (1997):

ut = ∇ ∙ (a(u, p)∇u − ub(p)∇ p) in Ω × (0,∞),

pt = d1p + uf (p) − g(p)p in Ω × (0,∞),

u(x, 0)= u0(x), p(x, 0) = p0(x), for x ∈ Ω,

∂u

∂ν
=

∂p

∂ν
= 0 on∂Ω × (0,∞). (A.1)

In Yagi (1997, Theorem 2.1), it states

THEOREM A1 Let u0, p0 ∈ H1+ε0(Ω) for 0 < ε0 6 1 andu0(x) > 0, p0(x) > δ0 > 0 onΩ. Assume
that a real local solution(u, p) to (A.1) exists on the interval [0, S] such that

u, p ∈ C([0, S); H1+ε1(Ω)) ∩ C([0, S); H2(Ω)) ∩ C1([0, S); L2(Ω))

for someε1 > 0. In addition, assume thatp satisfiesp(x, t) > 0 onΩ × [0, S] and an estimate

‖p(t)‖H2 6 At
(ε2−1)

2 on0 < t 6 S,

for someε2 > 0 and constantA. Then,

u(x, t) > 0, p(x, t) > p(t), for all (x, t) ∈ Ω × [0, S],

wherep denotesa positive function defined as the global solution to an ordinary differential equation

dp

dt
= −g(p)p, on0 < t < ∞,

p(0)= δ0 > 0. (A.2)

For further connection to our work, we utilize the continuation to a unique solution that Yagi developed
(Yagi, 1997, Theorem 3.4) with the following theorem.

THEOREM A2 Let u0, p0 ∈ H1+ε0(Ω) for 0 < ε0 6 1 andu0(x) > 0, p0(x) > δ0 > 0 on Ω and
0 < η < β − α. Then, in the function space,Cη([0, ∞); H1+ε1(Ω)), the problem (A.1) possess a
unique local solution

u, p ∈ C([0, S); H2(Ω)) ∩ C1([0, S); L2(Ω))

with the lower bounds

u(t) > 0, p(t) > p(t), for t ∈ [0, S],

wherep(∙) is a positive function defined by equations in (A.2). The interval [0, S] on which the solution
exists at least is determined by the norms‖u0‖H1+ε0 and‖p0‖H1+ε0 andthe initial lower boundδ0.

It is to be noted that by this theorem from Yagi’s work a maximal solution to (A.1) can be uniquely
defined in the spaceCη([0, S); H1+ε1(Ω)) for 0 < η < β − α for eachu0, p0 suchthat u0, p0 ∈
H1+ε0(Ω) for 0 < ε0 6 1 andu0(x) > 0, p0(x) > c0 > δ0 > 0 onΩ.
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