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Identification of a chemotactic sensitivity in a coupled system
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Chemotaxidgs the process by which cells behave in a way that follows the chemical gradient. Appli-
cations to bacteria growth, tissue inflammation and vascular tumours provide a focus on optimization
strategies. Experiments can characterize the form of possible chemotactic sensitivities. This paper ad-
dresses the recovery of the chemotactic sensitivity from these experiments while allowing for non-linear
dependence of the parameter on the state variables. The existence of solutions to the forward problem is
analysed. The identification of a chemotactic parameter is determined by inverse problem techniques.
Tikhonov regularization is investigated and appropriate convergence results are obtained. Numerical
results of concentration-dependent chemotactic terms are explored.
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1. Introduction

Biological and ecological research has investigated cell migration. To model cell migration, studies
have been composed to include migration, diffusion, haptotaxis and chemdtahes & Sege| 1970,
1971a,bKeller, 2006;0ster & Murray,1989;Andersoret al.,2000;Anderson & Chaplain1998;Dung,
2002). In this paper, the focus is chemotaxis. Chemotaxis describes the movement of an organism and/og
groups of cells that either move towards or away from a chemical or sensory stimulus. In the early work £
by Keller & Segel(1970), chemotactic responses of amoebae to bacteria are studied in a cellular slime 'gi
mould. Bacterial chemotaxis, which describes the ability of bacteria to move towards increased or de- ¢
creased concentrations of attractants, is analysed at the macroscopic level through a microscopic model
of individual cells Erban & Othmer2004;Sege] 1977). It was first observed Hyngelmann(1881).

For example, ifSalmonella typhimuriugra strain of salmonella associated with meat and poultry prod-
ucts, is introduced to a petri dish filled with a nutrient, the bacteria will migrate outwards, consuming
the nutrient. As they consume the nutrient, they secrete a chemoattractant. After several days, the bac-
teria will have clustered in the areas of high chemical concentration. A structure of concentric rings is
usually observed experimentally. The work Giiet & Mitchell (1976) describes patterns formed from
Escherichia colimovement towards amino acid&llweiss et al. (1977) investigatevibrio cholerae

which are inhibited by a pepsin digest that reduces the possibility of the vibrios attaching to the in-
testinal wall. Other author$-{sher & Lauffenburgerl990;Alt & Lauffenburger, 1985) have addressed
chemotaxis in immune cell motility which when combined with tumour morphology is hoped to provide
new avenues of treatment strategies. In addition, authors have analysed chemotactic responses in ecol-
ogy (Lapidus,1980) and investigated mathematical issues for the existence of global solutions in mul-
tiple dimensions (Kowalczyk2005;Herrero & Vebzquez1996;Hillen & Levine, 2003;Childress &
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Percus 1981; Chalub & Kang,2006; Aida & Yagi, 2003; Jabbarzadeh & Abram£005; Senba &
Suzuki,2002a,bHorstmann2002; Gajewski & Skrypnik,2003).

Chemotaxis also arises in a variety of medical applications. In particular, it has been studied in
connection with myxobacteria (Sliusarendioal.,2006; Tosinet al.,2006), leukocyte mobility in tissue
inflammation Alt & Lauffenburger, 1985), the migration of tumour cells towards bo@er(et al.,, 1979)
and other issues in morphogenedia(ni & Othmer, 2001). Another interesting problem involves the
study of vascular tumours through angiogenesis. Angiogenesis involves the formation of capillary net-
works of blood vessels that are vital for the growth of tumours. Mathematical modelling of angiogenesis
(Andersonet al., 2000; Anderson & Chaplain1998;Bellomo & Preziosi,2000; Corriaset al., 2003;
Hillen & Painter, 2001;Levineet al.,2001;0rr et al.,1979;Painter & Hillen 2002;Sleeman & Leving
2001;Velazquez2004a,b) has given new insight into tumour structure. Normal tissue, lymphocytes and
other types of cells grow at the tumour site or are recruited through chemotaxis. The need to identify
the nature of this recruitment is at the heart of this paper. The identification of a chemotactic term falls
under the umbrella of an inverse problem. In principle, we can measure certain characteristics of the tu-
mour concentration and use mathematical techniques to recover the chemotactic term, in particular the
chemotactic sensitivity, that is driving the tumour gro@atenbyet al. (2002). To our knowledge, this
‘inverse problem’ approach has only been used in the analysis of chemotaxis moBakkyStru’ &
Kugler (preprint) under the assumption that the chemical concentration is explicitly known.

Since there are many applications in which chemotaxis arises, there are also different models of

the chemotactic effect. There have been many different expressions proposed that model chemotactic

velocity, seeKeller & Segel(1971b),Lapidus & Schiller(1976), Ford & Lauffenburger(1991) and
Tysonet al. (1999). This velocity is used in a bacterial conservation equation in the formulation of a
system of partial differential equations that govern the particular application. The chemotactic sensi-
tivity determines the velocity. Our goal is to develop a technique whereby the appropriate chemotactic
sensitivity model, and hence chemotactic velocity, can be determined from available data. In particular,
we consider a system of partial differential equations that was develop@dtiey & Murray(1989) to
model the pattern formation of cartilage condensation in a vertebrate limb bud. A similar system was
studied byMyerscougtet al.(1998). The numerical solution of similar systems was recently studied by
Tysonet al. (2000) andNakaguchi & Yagi(2001). Work byFister & McCarthy(2003) has shown that
the system of partial differential equations can in fact be controlled theoretically through the introduc-
tion of a mechanism controlling the number of cells being generated. Simulations provide optimal drug
treatment programs for patients to facilitate the rebuilding of cartilage or the reduction of cancerous tu-
mours. The chemotactic sensitivity Hister & McCarthy(2003) was known and the control parameter
was a harvesting term. Our goal in this work is to ‘identify’ the chemotactic sensitivity.

The paper is organized into six sections. In Sec@iphe existence of the forward problem is proven.
In Section3, identifiability of the chemotactic sensitivity is established using the weak formulation of the
state problem. In Sectiof, Tikhonov regularization is used to approximate the solution through the use
of minimization arguments. The rate of convergence of the approximate minimizer of the chemotactic
sensitivity to the true parameter follows next. In Secttgmumerical experiments provide graphical
depictions of the accuracy of the recovery of the parameter. In Segtimmcluding remarks are made.

2. Forward problem

In this model,u(x, t) and c(x,t) represent the concentration of the cells and the chemoattractant,
respectively. The cells and the chemoattractant are governed by a convection—diffusion equation and
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areaction—diffusion equation as

U =MAU—-V-(y(u,c)uve) inQ x (0,T),

¢t =DAc+ bu C
t = uth uC,

u(x,0) =up(x), c(x,0)=-co(x), forxe Q,

a_uzﬁzo onoQ x (0, T), Q)

ov ov
wherev is the outward unit normaM and D represent the diffusion coefficients of the cells and the
chemoattractant. The Michaelis—Menten tepﬂfﬁ, represents a response of the chemoattractant to a
maximum carrying capacity or saturation rate, assurhifig> 0. We incorporate a decay term where
denotes the degradation rate. We assume that there is no flux of the concentrations across the boundary
and that the initial concentrations for the cells and chemoattractaop@gandcy(x), respectively.

Here, y (u, ¢) is the chemotactic sensitivity which monitors the chemical gradient attraction of the

cells. It is this term that we seek to identify. Dster & Murray (1989), Myerscoughet al. (1998)
and Fister & McCarthy(2003), the termy (u, ¢) is simply a constant. More generally(u, c) is a
linear function ofu in Velazquez2004a,b)Hillen & Painter(2001) andPainter & Hillen(2002), while
in Keller & Segel(1970,1971b),Lapidus & Schiller(1976),Ford & Lauffenburge(1991) andTyson
et al. (1999) it is a non-linear function af. We assume henceforth that the chemotactic sensitivity has
the formy (u, ¢) = a(c) and is a bounded function. We restrict our analysis to the dimensionless system

U =MAu—-V.(a(cjuvc) inQ x (0,T),

u
¢t =DAc+— —c¢,
t +u+1

u(x,0) =up(x), c(x,0)=cp(x), forxe Q,
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ov ov

We will establish a technique for the identificationadt) € A, where

A= [a e HY(1): HZ—‘Z‘(cl) - 2—21(02)

< Kjlep - Cz||L2(|)] .
L2(1)

Obsenre that, with the available data, we can only expect to recag@ron the interval = [Cmin, Cmax]-

The Lipschitz condition on the derivative of the chemotactic parameter is quite reasonable, since the
chemotactic parameter has a rate of change that is bounded for bacteria drortis. Lauffenburger

1991).

In order to prove identifiability and to establish the rate of convergence to our method, we will need
to establish existence of a solution @)(Using the standard notatidh*(£2) to represent the Sobolev
spaceWk-2(Q), let H*t?(Q) denote the intermediate space betwéef(Q) and HKT1(Q) for any
0 < 0 < 1.LetD be aninterval in [0oo). The spacé P(D; X) isthe L P spaceof measurable functions
in D with values in the Banach spae The spac€™(D; X), m=0,1,2,.. ., is the space ah-times
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continuouslydifferentiable functions irD with values inX, while the spac€’(D; X),0 < 6 < 1, is
the space of Elder-continuous functions iB with values inX.

THEOREM 2.1 If ug, g € H1T2(Q) for 0 < ¢ < 1 andug(x) > 0, co(X) > Co > Oon @, then a real
unique local solutiom, ¢ of (2) exists on an interval [O[] such that

u, ¢ € C"([0, 00); H**1(2)) N C([0, T); H3(2)) N CH([0, T); L*(Q))
with 0 < 1 < min (e, %) and0 < 7 < min (524, l_Tzﬂ) The solution satisfies the lower bounds

u(x,t) >0, c(x,t)>cet on[0,T]

Proof. Let X = L2(Q) x L2(2) andZ = H1*(Q) x H1*%(Q). The systemZ) can be formulated as
an abstract quasilinear equation

do

at + A= f@), 0<t<oo,

v(0)=0g

onthe Banach spack.
Let

(6) =) =-(2)
v = , v=\,), vo= .
c ¢ Co
Clearlyvg € Z.

We defineA(v) to be the linear operator i such that

s () () (49) 2

A

o

with domain

D(A®)) = [13 e H2(Q) x H?(Q); 2—2 _ o€ =0 onaQ].

on
f(o) = (mj)
u+1

Sincef (v) is Lipschitz, application of Yagi's workfagi, 1997, Theorems 2.1 and 3.4) yields our result.
(See Appendix A for statements of Yagi's results.) O

We also note thaHorstmann(2001) provides a related result for a constardnd a Michaelis—
Menton chemical production term via using Lyapunov functions to develop a global existence result.

Let the vectorf (v) be the function

3. Inverse problem statement and identifiability

In this section, we begin by establishing the identifiability of the paransgtgrfrom the available data
u(x, t) andc(x, t) almost everywhere it = L2((0, T), H1(Q)). Note that, in order for chemotaxis
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to be observed biologically, cells must be present and a chemical gradient must exist. This means that

u(x,t) andVce(x, t) must be non-zero for a measurable subse?ot (0, T).
We denote byug, c3) and(up, ) the solution pairs of 2) with chemotactic sensitivitiess(c) and
b(c), respectively.

THEOREM 3.1 Let (ua, Ca) and (up, Cp) bothbe solutions inW x W of the direct problem32) corre-
sponding ta(cy) andb(cp). If uz = up andcy = ¢, almosteverywhere in2 x [0, T], thena(c) = b(c).

Proof. We consider the weak form of the first equation of the direct probBfo¢ (ua, ca) and(up, Cp)
andsubtract them:

T T
/0 /Q%(ua_ub)gsdthM/o /Q(V(Ua—ub))v¢’d)(dt

T
= —/ / [a(ca)uaVea — b(cp)upVep] Ve dx dt.
0 Je

Sinceua (X, t) = up(X, t) andca (X, t) = cp(X, t) almosteverywhere, this reduces to
T
/ / [a(ca) — b(ca)]uaVea Ve dx dt = 0.
0 Jo
By definition, if ¢ is in W = L2((0, T); H1(2)), then we can choosg(x, t) = ca(X, t). Hence,

T
/ / [a(ca) — b(ca)]ua (Vca)2 dxdt =0.
o Jo

Our existence result, Theorekl, says thati; > 0. We also employ our biological assumptions that

Ua # 0andVc, # 0on a measurable subset@fx (0, T). Thus,
a(c) = b(c)

almost everywhere. a

4. Output least squares and Tikhonov regularization

We wish to identify a functiom(c) € .A from noisy measuremen(g,, z;) of (ua, c3). Recall that

A:[aeH%n:‘

oa oa
—(c1) — —(c
aC(l) 60(2)

< Kljep — C2|||_2(|) s
L2(1)

wherel = [Cmin, Cmax-
We define
F(a) = (ua(x, 1), ca(x, 1)) 3
with
F:A—-> W xW.
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In the presence of perfect dai&, z:), we would solve the non-linear ill-posed problem
F@°%) = (@, o), (4)

where(uyo, C,0) is the solution of the direct problem with = aP. To do this, using Tikhonov regular-
ization would involve approximating the solution by minimizing

. 2 %12
min (| F (@) — (@, 20) luxw + @lla = a"llfz ), ®)

wherea > 0is a small parameter ard is ana priori guess of the true solutiaaf. In real applications,

measurement errors mean that exact data are not available. Noisy data are assumed to have an error level

J, which means that

T T
/0 U= 21125t < &, /O o= Z22,0dt < 82 (6)

whereu andc arethe true cell and the chemical concentrations associated with the chemotactic sen-
sitivity a%, and z), and z2 are the noisy measurements of the cell and the chemical concentrations,
respectively.

We assume attainability of a true solution, i.e(@f, z.) € W x W, there exists @° e .4 suchthat

F@°%) = (zu, 2o). ©)

In the presence of noisy dat#), z2), theminimizera’ e A of (5) minimizes

@) =1IF @) = (), 2 fyxw +@lla—a%lFy,

T T
:/O ||u—z3||f2(g)olt+/0 ||c—z§||f2(g)dt+a||a_a*”fz(l) (8)

for appropriate choices @ € A anda.
We begin by establishing the weak-closedness of the R{@p.

THEOREMA4.1 If a, — a, € A, thenu,, — Ua, andcg, — Ca, i W.

Proof. Here, we give the outline of the proof and refer the readdfisteret al. (2006) for details.
Using that the solution to the state systefhi6é unique, one can defing, = u(a,) andc,, = c(an).

A transformation involving ! timeseach component of the solution pair is made witio be chosen

in order to obtain the boundedness of the solutiolMinThe weak definition of the solution associated
with the transformedi,, andcy, in (3) is analysed via Cauchy’s inequality and the boundedness of the
coefficients. Using the boundedness (independen} of the solution pairs, subsequences are extracted
that converge weakly ta, andc,. Lastly, comparison result$§{mon,1987) are used so that one can
pass to the limit in the weak formulation of the solution to show that ua,. andc, = ca.. O

COROLLARY 4.1 For any datdz), z2) € W x W, a minimizera’ of (8) exists.

This is true because the existence of a minim&efollows from the lower semicontinuity af, (a).
In the following corollary, we give a result that highlights the continuous dependence on the data.

COROLLARY 4.2 For fixeda, the minimizers depend continuously on the c{aﬂa zﬁ). If a(0) satisfies

a(d) > 0, &/a(d) > 0 ass— 0,
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then

; 5 _ 40 _

lim flaz —a’ll2q) = 0.
Theresult follows from standard results 8eidman & Voge(1989) that prove the continuous depen-
dence on the daté&), z2) for fixed o, and the convergence af towards the true parametef asthe
noise leveld and the regularization parametergo to zero. As the noise levels converge to zero, we

obtain the optimal result. Essentially, with this infinite set of data, the minimum is achieved and the
corresponding sensitivities converge as the noise goes to zero.

4.1 Convergence rate analysis

Although we have noted (without proof) the convergence of the minindgeo the true parameter
aY, the rate of convergence may be arbitrarily slow. We wish to determine a source condition that will
guarantee a certain rate of convergence. Even when our regularization parametemparable to our
noise leveb, such a source condition will require assumptions involwiranda® — a*.

Recallthat we seek to solve the non-linear problefi, F(a) = (zy, zc), whereF(a) = (ug, Ca).
Thetrue solution isa®, anda* is ana priori guess. In order to apply the theory Bfgl et al. (1989,
2000), we must establish the following:

e F is Frechet differentiable,

e F’isLipschitz with||[F’(a) — F'(b)|| < y |la— b||,

e thereexistsw € L2((0, T); H1(Q)) satisfying the source conditia? — a* = F'(@%*w,
e ylwl <1

In practice, although computing’ and (F’)* is not difficult, it can be quite tricky to establish the
Lipschitz condition onF’ with our system of coupled non-linear partial differential equations. Instead,
our approach involves developing a ‘source condition’ without imposing differentiability constraints
on F. Thus, we establish @/9) convergence. This technique is also found in the worlEn§l &
Kugler(2002).

THEOREM4.2 Suppose that there exists a functiore L2((0, T); H1(Q)) satisfying
w(x,0)=w(x,T)=0, AweL*(0,T);L*Q))
such that for any? € A,

.
@ —a*, ¥) 2 = / / ¥ (CL0)Uq0 VCyo - Vo dx dt.
o Ja

o -2
Uge — Z
| e

12% — &2l 2(1) = OW5).

If a ~ J,then

2

o2 =008

L2(2) 2(Q)

and

Proof. For clarity, we briefly describe the techniques used in this proof. Using that a minimizer to
J, (a) exists, we obtain an upper bound in terms of the error lévahd the norm of the difference in
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the minimizer and optimah values. We then use our source condition with the weak formulation of
the cell and the chemical differential equations to obtain a representation of the inner product of the
appropriate differences of the approximating minimizers. This allows us to bauid. Specifically,
we use triangle and Young’s inequalities to bound the time and spatial derivatives of the differences
in the state variables. Integration by parts anildér’s inequality enable us to successfully bound the
spatial derivatives of the states in terms of the states themselves. Using the assumptiadsaindm
choosinge sufficiently small, we can obtain the error of ordép with o ~ §.

Sincea? is a minimizer ofJ, (a), we havel, (a2) < J,(a%). Using our definition of noise level (6),

we find that
T
L

)
< /O g — 22125, + a0 = P2 Ut +alla® — & 122,

2 s 2

0 —
2 s

0
ull L2 dt+alla, -

Ugs —

a

+ |[Cag

%12
a ||L2(|)

<28 +ala® - a'l,, 9)

Addinga|a® — a" I L2(1) to both sides of the inequality and using inner product properties yield

.
/ Hu;—za 2
u
0 a

<26+ 2a(a® —a*,a® — ad) 2. (10)

12 .
+ e =2 dtrana® — 2ty

Obsenre that our source condition
T
@ —a*, )2 =/ / ¥ (Cq0)Ugz0VCro - Vo dx dt
o Jo

with ¥ = a® — aJ, together with the weak forms of the cell equation in the forward prob@yricf
a%anda?, is

@ —a*,a’ |_2(|)—// uao—uao wdxdt+// Ugo — aé);)-dexdt

/ / 2 Caa uachag—ag(cao)uachao]dexdt

and (10) becomes

[ -2
<252—|-2a/0T/Q(uao—uag)twdxdt+2aM/oT/gV(uao—uag)-dexdt

+2a/ / Ua,,VCaa aﬁ(cao)uachao] - Vw dx dt. (11)

2 2
. 0 012
+ e —z‘éHLz(m dt + afla® — aJ |25,

L2(2)
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We bound each integral in (11) separately using triangle and Young'’s inequalities. We find that

a// Ugo — Ugo dedt‘
<e/‘
0

T
aM/O /Qv(uao—uag)-dexdt‘

2
<eM252+a—/T 1Awl? g, dt+aM2/T
2e 0 0

whereg isan arbitrary parameter resulting from the use of Young'’s inequality. We utilize the assumptions

1l =

2 T
u,>—zf52 dt+ 2 [ Jwel2y, .. dt + 662
a 2c Jo | HILA@)

L2(Q)

and

[l2] =

2

Uy —

o

5

YlLz@)

oa

<_< s PN __C
M S i H (c1) (c2)

< Klew = el 2¢0)»
L2(Q)

Greens theorem, the boundary conditions andldier’s inequality to obtain the estimate

sl =

/ / al Caa achag—ag(cao)uachao]-dexdt‘

[’71/0 Huag -7 :

T
dt + [[UflZee KZ/ c —z;iHZ dt
LZ(Q) ( ) 0 a |_2(_Q)

—/ 1Aw]F 2 g, dt + 67507 + el|Ulf oo (o) K26

T 2 T 12
FelVul?e K2/ Hc; - 5” dt + £72 2/ Hu P
Lo(Q) o I Z L2(2) ik O e A

L2(2)

2 T
a A
+— /O IV, dt + el| VUl o o) KZ? + e 1?0,

Groupingterms and relabelling constants, we have

T 2 2
o 0_ 02
/0 Huag ] 7)) + Hcag Zg“LZ(Q) dt +alla” — &,z
T 2
< 2% + 2C120% + 2:Co / s -2 o)
O o

+28C3/0T Hcag B ZgHiZ(Q) dt
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2 T
a 2 2 2
+ 5 [l g, + 31801 g, + 20Vl g )
If ¢ is chosen to be sufficiently small, then for the choiges ¢, we obtain

[

2

Ugs — 2

2
5 2
Cy — Z¢ dt = O(o
L2(Q) + H % HL2(Q) @)

and
12° = a2 llL2qy = OW0). O

We have now determined a condition ah— a* thatguarantees a practical rate of convergence for our
regularization scheme. If we choose our regularization parameiersuch a way that it approaches
zero at the same rate as the noise léyehen our recovered chemotactic sensitidfywill approach
the true chemotactic sensitiviaf ata rate proportional ta/s.

5. Numerical results

In order to demonstrate the effectiveness of Tikhonov regularization for this application, we consider
several examples.
All computations were carried out in MATLAB. The Tikhonov functional

)
w@= [ [ Q=P+ ie—2Pddt+ala-a'ly, (12)

was minimized using Isgnonlin, a MATLAB implementation of the Levenberg—Marquardt method with
line search l(evenberg1944; Marquardt,1963). Although it was not tractable to do so in the conver-
gence analysis, a gradient-based algorithm is appropriate here because computing the gradient and its
adjoint is straightforward.
We restrict our discussion t@ = [0, 1]. Recall thatzﬂ andzﬁ represennoisy data an@* repre-
sentsana priori guess of the chemotactic sensitivityCell and chemoattractant concentration data on
Q = [0, 1] were generated using pdepe with high accuracy. During the computatilyiaf cell and
chemoattractant concentration&x, t) andc(x, t) associated with a particularwere computed using
pdepe with moderate accuracy over coarser space and time meshes than those used to simulate data.
Since Isgnonlin requires objective functions of the form

1 2 1 2
§||F||2=§ijfk(x),

we approximated the first two terms df (a) by

M N N
> [Z[u(xi,m — (i, )]+ D [e(xi, 1)) — Zc(Xi,tj)]z] (AX)(At),

j=1li=1 i=1

wherex; = i(Ax) fori = 0,...,N with Ax = 1/N andt; = j(At) for j = 0,..., M with
At = o /M.
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We approximata(c) by

L
a(c) = > apk(©), (13)

k=1

wheregy arethe usual piecewise linear hat functions defined over a partitioo.f,[cmax]. Note that
any functiona(c) can be represented by its corresponding veat@ince the values amin andcmax
may vary considerably for each used during the optimization, we choose instead an interval that is
sufficiently large to include the range offor eacha considered by the algorithm. In practice, this
means making a guess and expanding the interval wheswves our chosen interval.

The penalty term||a — a*||% canbe replaced by

=(a—a") Ba-a,

L
> (& —a)¢
i=1 A

wherethe components of the matr& are given byBij = (¢i, ¢) 4.
Various strategies for the choice of regularization parameters are discud&epeii2002). In each

of the following examples, we used an L-curve method to choose an optimal regularization parameter
Recall that our chemotaxis system is

U =MAu—-V-.(alcjuvc) inQ x (0,T),

¢t =DAc+ bu c
t — U+h He,

u(x,0) =up(x), c(x,0)=co(x), forxe Q,

ou oc
—=—=0 onoQ x (0,T). (14)
ov ov

A similar system was used tylyerscougtet al. (1998) in their numerical simulations of chemotaxis in
limb bud development with parameters

M=025 D=1, ac) =2, h=1 b=u, uy=1+e(x), c=05 «=I0,1],

whereu € [0,3000] ande(X) was a bounded perturbation function. In Examples 1-3, we used the
Myerscough parameters with

e(x) = e 95¢=08° T _025 p= =50
ExAMPLE 1 Consider the chemotactic coefficient used\byerscoughet al. (1998)
a(c,u, x,t) =2.
The cell and the chemoattractant concentrations associated withdahésshown over the time interval

[0, 0.25] in Fig.1. An initial guess ol = 1 was used. Tha priori guess was also chosen todie= 1.
Theparameter was recovered to within.461 x 10~ of the true value af = 0.25.
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FiG. 1. Cell and chemical concentrations over time intervaD[@5] with a(c, u, x,t) = 2.
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FiG. 2. Cell and chemical concentrations over time intervab[@5] with a(c, u, x, t) = 2/c.

EXAMPLE 2 Keller—Segel model
We consider the non-linear chemotactic coefficient

a(c) =2/c

proposed in the original Keller—Segel model for chemotakKisllér & Segel,1970). The cell and the
chemoattractant concentrations associated withethi® shown in Fig2.

From the data, we find thatfin, Cmax] = [0.1794,0.6398] whera(c) = 2/c. Since the optimization
algorithm will use approximations of other chemotactic functions, we attempt to recoresfcicver a
larger interval. We found the interval.[} 0.7] to be sufficiently large to include the rangeador each
a considered by the algorithm.

An initial guess ofa = 15(1 — c)2 was used. The priori guess was also chosen to &t =
151 — c)2. Figure 3 shows the chemotactic functianand its recovery ofineise With and without
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FiG. 3. T5rue chemotactic coefficiea(c) = 2/c and its recovery with no regularization (left) and a regularization parameter of
a=107".
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FiG. 4. Cell and chemical concentrations over time interval[@5] with a(c, u, x,t) = 2/(1 + c)2.

regularization. A regularization parametercof= 10~> was chosen by an L-curve method. Note that
the regularized recovery is quite reasonable over the intetyl,[Cmax] = [0.1794,0.6398] and that
its quality degrades, as expected, outside this interval.

ExXAMPLE 3 Reaction kinetics model
A non-linear chemotactic coefficient

based on reaction kinetics was proposedSiegel(1977). The cell and the chemoattractant concentra-
tions associated with thesare shown in Fig4. From the data, we find thatin, Cmax] = [0.5,0.5799]

TT0Z '€ 1990190 U0 1sanb Ag B10°SpeuINolpIojX0 quillewW] WOl Papeojumoq


http://imammb.oxfordjournals.org/

228 K. R. FISTER AND M. L. MCCARTHY

a(c)=2/(1+c)?, 20 points, No regularization afc)=2/(1+c)?, 20 points, alpha=2.5¢"2
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FIG. 5. True cherr310tactic coefficieatc) = 2/(1+c)2 and its recovery with no regularization (left) and a regularization parameter
ofa =25x 107°.

whena(c) = 2/(1 + c)2. Once again, we attempt to reconstrat) over a larger interval. We found
the interval [048,0.6] to be sufficiently large to include the range ®for eacha considered by the
algorithm.

An initial guess ofa = 1 was used. Tha priori guess was also chosen todfe= 1. Figure5 shows
the chemotactic functioa and its recovery oénoise With and without regularization. A regularization
parameter oft = 2.5 x 10~3 was chosen by an L-curve method. Note that the regularized recovery
is quite reasonable over the intervalq@,0.57] and that its quality degrades, as expected, outside this
interval.

Comments. The number of iterations used by the algorithm is quite sensitive to the choice of initial
functionag and the number of piecewise linear basis functions usetidh For experimental data, we

must acknowledge that the quality of the recovery degrades with increased noise in the data. In certain
applications such as pattern formationtn coli or S. typhimuriumseeTysonet al. (1999), the size

of the interval Emin, Cmax] iS Sometimes too small to give adequate information for the recovery of the
chemotactic coefficient. This can be avoided by taking a larger time intery&@] [0n numerical simu-

lations, this requires a careful choice of numerical method for the solution of the chemotaxis system, see
Tysonet al. (2000). An alternative approach is to restrict our measurements to a particular time, rather
than an interval of time. The efficacy of this approach will be discussed in a future paper.

6. Conclusions

In this work, we have explored a particular mathematical aspect of the chemotactic sensitivity within
the gradient. The identification of a chemotactic sensitivity with functional dependence has been deter-
mined. The interesting aspect of this work is that, to our understanding, no one has been able to capture
the chemotactic sensitivity information from limited data with dependence on the chemical in a system.
We have proven the existence of the state solutions in specific Sobolev spaces and formulated an inverse
problem. We have employed Tikhonov regularization to recover the chemotactic sensitivity from noisy
measurements. In doing so, a minimization problem is formed and the necessary convergence results
for an approximating minimizer to the true parameter are discussed.
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Anothersignificant result is that we have established a source condition that guarantees a particular

rate of convergence by imposing a Lipschitz condition on the derivative of the chemotactic sensitivity.

In practice, this is biologically reasonable, since the chemotactic sensitivity has a rate of change that is

bounded for bacterial growth (Ford & Lauffenburg&®91).
Numerically, we have utilized models froMyerscoughet al. (1998),Keller & Segel(1970) and

Segel(1977) for the studies of the comparison of our proposed work to the actual scenarios. With the

use of Tikhonov regularization, we have been able to recover the chemotactic sensitivity with reasonable
accuracy. We note that this method, which although gives us accurate results for the chosen recoveries,

may not be able to distinguish between similar chemical sensitivity forms. This paper does provide
an initial framework to address these studies and further investigations to discern the differences in

relative chemical sensitivities will follow. A biological benefit of this knowledge is the ability for one

to understand the growth associated with chemotaxis within tumour studies, leukocyte dynamics and
bacterial patterns based on the specific gradient information that can be recovered from imperfect data.
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Appendix A

For more thorough understanding of Theor2rt, we include the parabolic problem convention
used inYagi (1997):

u=V- @, pVu—ub(p)Vp) in Q2 x (0,00),
pt =dAp+uf(p) —g(p)p in Q x (0,00),
ux,0)=up(x), px,0)=po(x), forxeQ,

ou ap
ov v
In Yagi (1997, Theorem 2.1), it states

=0 onoQ x (0,00). (A1)

THEOREMAL Letug, pg € HH0(Q) for 0 < g9 < 1 andug(x) > 0, po(X) > dp > 0on Q. Assume
that a real local solutiofu, p) to (A.1) exists on the interval [(5] such that

u, p € C([0, S); H1*¥1(2)) N C([0, S); HZ(2)) N C([0, S); L3(Q))

for someg; > 0. In addition, assume that satisfiesp(x, t) > 0on Q x [0, S] and an estimate

(ep=1)
IP®Ie < Atz on0<t<S,
for somee> > 0 and constanA. Then,
u(x,t) >0, p(x,t) > p(t), forall(x,t)eQ x]I0,9],

where p denotesa positive function defined as the global solution to an ordinary differential equation

dp

—=—g(p)p, onO0<t < oo,

dt —=
P(0)=do > 0. (A.2)

For further connection to our work, we utilize the continuation to a unique solution that Yagi developed
(Yagi, 1997, Theorem 3.4) with the following theorem.

THEOREM A2 Letug, po € H1t0(Q) for 0 < ¢g < 1 andup(x) > 0, po(X) > dy > 0on Q and
0 < 5 < B — a. Then, in the function spac&”([0, co); H1t?1(Q)), the problem A.1) possess a
unique local solution

u, p e C([0, S); H%(2)) N C([0, 9); L3(Q))
with the lower bounds
ut) >0, p@) = pt), fortelo,s,

wherep(-) is a positive function defined by equations in (A.2). The interval§lon which the solution
exists at least is determined by the norfog|, 1+, and|| poll 1+, andthe initial lower bound.

It is to be noted that by this theorem from Yagi's work a maximal solutiot@)(can be uniquely
defined in the spac€”([0, S); H*1(Q)) for0 < 4 < f — a for eachuo, po suchthatuo, po €
H1teo(Q) for 0 < gp < 1andug(x) > 0, po(X) > Co > dg > 0on Q.
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