Suppose we pull out $10 \mathrm{M} \& \mathrm{M}$'s from a large bag that contains 30% of a new "speckled" limited edition M\&M's. What is the probability that 3 of the 10 are speckled?

This chapter deals with discrete random variables involving counts. We will restrict our discussion to a random variable that gives us the Binomial Probability Model (p. 436-440). The book also mentions Geometric and Poisson Probability Models.

Binomial Setting

1. There are a fixed number of trials, n.
2. The trials are independent.
3. There are only 2 possible outcomes (Success or Fail) in each trial.
4. The probability of success is the same for each trial, p.

Binomial Probability Model or Distribution: $B(n, p)$ or $\operatorname{Binom}(n, p)$
n is the number of trials.
p is the probability of a success.
$q=1-p$ is the probability of a failure.
k is the number of successes.
$n-k$ is the number of failures.
Mean: $\mu=n p \quad$ Standard Deviation: $\sigma=\sqrt{n p q}$
$P(X=k)={ }_{n} C_{k} \cdot p^{k} \cdot q^{n-k}$ where ${ }_{n} C_{k}=\frac{n!}{k!(n-k)!} \cdot{ }_{n} C_{k}$ is read as "n choose k". You can access this function on your calculator by pushing the MATH button, then cursor over to the PRB menu option, and ${ }_{n} C_{k}$ is the $3^{\text {rd }}$ option. You will have to type $n_{n} C_{k} k$.

What about $P(X \leq k)$?

Fortunately the Calculator has built in Binomial functions located in the DISTR menu (The same one we used for the Normalcdf function), by pushing the $2^{\text {nd }}$ key then VARS (DISTR). The Binomial options are the 0 : binompdf(and A:binomcdf(.
$\operatorname{Binompdf}(\mathbf{n}, \mathbf{p},[\mathbf{k}])$ calculates $P(X=k)={ }_{n} C_{k} \cdot p^{k} \cdot q^{n-k}$ for a specific k. The k is optional.if it is not included then the probability distribution for k going from 0 to n will be shown.

Binomcdf(n,p,k) Calculates $P(0)+P(1)+P(2)+\cdots+P(k)$ where each of the probabilities is calculated using the Binomial formula. This is a cumulative probability.

Go back to the M\&M example from the beginning.
a) Find the Mean and Standard Deviation
b) Find the probability of pulling at exactly 3 speckled M\&M's.
c) Find the probability of pulling out at most 3 Speckled M\&M's.
d) Find the probability of pulling out at least 6 Speckled M\&M's.
e) Find the probability of pulling out at least 3 Speckled M\&M's.
f) Find the probability of pulling out more than 3 Speckled M\&M's.
g) Find the probability of pulling out less than 3 Speckled M\&M's.

For large n the Binomial Distribution will be approximately a Normal Distribution with $\mu=n p$ and $\sigma=\sqrt{n p q}$. How large an n ? We want $n p \geq 10$ and $n q \geq 10$. This means that there are at least 10 successes and 10 failures.

