There are many scenarios where probabilities are used to determine risk factors. Examples include Insurance, Casino, Lottery, Business, Medical, and other Sciences.

Random Variable is a variable whose value is a numerical outcome of a random phenomenon.

- Usually use capital letters at the end of the alphabet to denote a random variable like X or Y.
- A particular value of a random variable will be denoted with a lower case letter.

Two types of Random Variables:

1. Discrete random variable has a finite number of distinct outcomes Example: Number of books this term.
2. Continuous random variable can take on any numerical value within a range of values.

Example: Cost of books this term.
Probability Model consists of all values, x, of a random variable, X, along with the probabilities for each value denoted $P(X=x)$.

The Expected Value of a random variable is the value we expect a random variable to take on or the theoretical long-run average value. It is denoted μ for population mean or $E(x)$ for expected value. The expected value for a discrete random variable is found by summing each value by its probability.

$$
\mu=E(x)=\sum x \cdot P(X=x)
$$

Note: Every possible outcome most be included when finding $E(x)$ and the probability model must be legitimate.

Examples: p. 427: 2b

x	100	200	300	400
$P(X=x)$	0.1	0.2	0.5	0.2

p. 427-8: 8

The Variance of a random variable is the expected value of the squared deviation from the mean. The variance of a discrete random variable is found by calculating

$$
\sigma^{2}=\operatorname{Var}(X)=\sum(x-\mu)^{2} \cdot P(X=x)
$$

The Standard Deviation of a random variable is the square root of the variance.

$$
\sigma=S D(X)=\sqrt{\operatorname{Var}(X)}
$$

Example: p. 428: 12b

Continuous random variables have means and variances, but this book does not show how to calculate them.

More about Means and Variances:

- Adding or subtracting a constant to each value of a random variable shifts the mean but does not change the variance or standard deviation:

$$
E(X \pm c)=E(X) \pm c \quad \operatorname{Var}(X \pm c)=\operatorname{Var}(X)
$$

- Multiplying each value of a random variable by a constant multiplies the mean by that constant and the variance by the square of the constant:

$$
E(a X)=a E(X) \quad \operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)
$$

- The mean of the sum of two random variables is the sum of the means:

$$
E(X+Y)=E(X)+E(Y)
$$

- The mean of the difference of two random variables is the difference of the means:

$$
E(X-Y)=E(X)-E(Y)
$$

- If two random variables are independent, then variance of their sum or differences is always the sum of the variances:
$\operatorname{Var}(X \pm Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$
Example: p. 429: \#28

	Mean	SD
X	80	12
Y	12	3

