12.1 Random Phenomenon is a situation in which we know what outcomes can occur, but we do not know which outcome will occur. We cannot predict each outcome, but there will be a regular distribution over many repetitions.

For a random phenomenon each attempt or trial generates an outcome.
Sample Space is the set of all possible outcomes of a random phenomenon.
Rolling Two coins:
Number of heads on 2 coins:
Number when rolling 2 dice:
Event - A set of outcomes of a random phenomenon.
Rolling an odd on 2 dice: Rolling at most 5 on 2 dice:

Individual trials are independent if the outcome of one trial does not influence or change the outcome of another.

The Law of Large Numbers says that the long-run relative frequency of repeated independent events gets closer and closer to the true relative frequency as the number of trials increases.

This does not mean that a random phenomenon is supposed to compensate for the past. If we had 6 numbers in a row that were less than or equal to 7 the next throw does NOT have a better chance of landing with a number greater than 7 . What is the chance that the next throw has a number less than or equal to 7 ?

12.2 Modeling Probability

Probability of an outcome is the proportion of times the outcome occurs over a long series of repetitions.

$$
P(A)=\frac{\# \text { outcomes in } A}{\# \text { of possible outcomes }}
$$

12.3 Formal Probability

Probability Rules:

1. A probability is a number between and including 0 and 1.

For any event $A, 0 \leq P(A) \leq 1$. The probability of an event that will never occur is 0 , while the probability of an event that will always occur is 1 .
2. The probability of all outcomes together is $1 . P(S)=1$
3. The Complement of \mathbf{A}, denoted A^{c}, is the set of all outcomes that are not in the event A.

Complement Rule: The probability that an event occurs is 1 minus the probability the event does not occur.

$$
\begin{aligned}
& P(A)=1-P\left(A^{c}\right) \\
& \text { or } P\left(A^{c}\right)=1-P(A) \\
& \text { or } P(A)+P\left(A^{c}\right)=1
\end{aligned}
$$

The set \mathbf{A} and its complement.
4. Two events that have nothing in common are called Disjoint or Mutually Exclusive.

Two disjoint sets, A and B.
Addition Rule: For two disjoint events A and B, the probability that one or the other occurs is the sum of the probabilities of the two events.

$$
P(A \text { or } B)=P(A)+P(B)
$$

5. Multiplication Rule: For two independent events A and B, the probability that both A and B occur is the product of the probabilities of the two events. $P(A$ and $B)=P(A) \times P(B)$

Two independent events A and B are not disjoint, provided the two events have probabilities greater than 0 .

Two sets A and B that are not disjoint. The event $(\mathbf{A}$ and $\mathbf{B})$ is their intersection.

What Can Go Wrong?

- Beware of probabilities that do not add up to 1.
- Do not add probabilities of events that are not disjoint.
- Do not multiply probabilities of events if they are not independent.
- Do not confuse disjoint and independent.

