11.7 - Events Involving And; Conditional Probability

Events A and B are independent if the outcome of one has no effect on the probability of the outcome of the other.

Multiplication Rule for Independent Events

If A and B are independent events, then

$$
P(A \text { and } B)=P(A) \cdot P(B) .
$$

(Can generalize for more than 2 events)

Examples

The Multiplication Rule for any two events

For any two events A and B,

$$
P(A \text { and } B)=P(A) \cdot P(B \mid A)
$$

$P(B \mid A)$ means the Probability of event B occurring given that event A has already occurred. If A and B are independent then the $P(B \mid A)=P(B)$

Examples

The Conditional Probability is a probability that depends on a condition already occurring. The conditional probability that event B occurs given that event A has already occurred is denoted $P(B \mid A)$ and is found using either

$$
P(B \mid A)=\frac{\text { number of outcomes in } A \text { and } B}{\text { number of outcomes in } A} \quad \text { or } \quad P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}
$$

Examples

	Wore Seat Belt	No Seat Belt	Total
Driver Survived	412,368	162,527	574,895
Passive	510	1601	2111
Total	412,878	164,128	577,006

