11.7 – Events Involving And; Conditional Probability

Events *A* and *B* are **independent** if the outcome of one has no effect on the probability of the outcome of the other.

Multiplication Rule for Independent Events

If A and B are independent events, then

 $P(A \text{ and } B) = P(A) \cdot P(B).$

(Can generalize for more than 2 events)

Examples

The Multiplication Rule for any two events

For any two events A and B,

 $P(A \text{ and } B) = P(A) \cdot P(B \mid A)$

P(B | A) means the Probability of event *B* occurring given that event *A* has already occurred. If *A* and *B* are independent then the P(B | A) = P(B)

Examples

The **Conditional Probability** is a probability that depends on a condition already occurring. The conditional probability that event B occurs given that event A has already occurred is denoted P(B | A) and is found using either

 $P(B | A) = \frac{\text{number of outcomes in } A \text{ and } B}{\text{number of outcomes in } A}$ or

or $P(B | A) = \frac{P(A \text{ and } B)}{P(A)}$

Examples

	Wore Seat Belt	No Seat Belt	Total
Driver Survived	412,368	162,527	574,895
Passive	510	1601	2111
Total	412,878	164,128	577,006