11.6 - Events involving Not and Or; Odds

The probability of the complement of an event $\mathrm{E}-P($ not $E)$ is the probability that event E does not occur.

$$
P(E)+P(\operatorname{not} E)=1 \quad \text { or } \quad P(\operatorname{not} E)=1-P(E)
$$

Example

Events A and B are mutually exclusive or disjoint if they have nothing in common. If A and B are mutually exclusive then the addition rule becomes

$$
P(A \text { or } B)=P(A)+P(B)
$$

The Addition Rule: For any two events A and B,

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

Examples

Odds

In many everyday situations odds are used instead of probabilities. Odds are usually given in the form of odds against an event E occurring.

Probability to Odds

Odds against are written in the form a to b or $a: b$. If the experiment is ran $a+b$ times then the event will occur b times and not occur a times.

$$
\text { Odds against event } E=\frac{P(\text { not } E)}{P(E)}=\frac{P(\text { failure })}{P(\text { success })}=\frac{a}{b}
$$

Write odds with whole numbers that are in simplest terms. (No common factors).

If the odds against an event occurring are a to b, then the odds in favor of an event occurring are b to a or $b: a$.

$$
\text { Odds in favor of event } E=\frac{P(E)}{P(\operatorname{not} E)}=\frac{P(\text { success })}{P(\text { failure })}=\frac{b}{a}
$$

Examples

Odds to Probabilities

Odds against event E occurring are a to b then (Odds in favor event E are b to a)

$$
P(E)=\frac{\text { number of times event } E \text { occurs }}{\text { total number }}=\frac{b}{a+b}
$$

$$
\left[P(\operatorname{not} E)=\frac{\text { number of times event } E \text { does not occur }}{\text { total number }}=\frac{a}{a+b}\right]
$$

Examples

