

N	an	ne

Show all work necessary for your answers.

1. Compute the following definite integrals without using antiderivatives, but based only on the area they represent.

(1)
$$\int_{-6}^{6} 4 + \sqrt{36 - x^2} \ dx$$

(b)
$$\int_{-1}^{2} 1 \ dx$$

2. Given that $\int_{-1}^{2} x^2 dx = 3$ and $\int_{0}^{2} x^2 dx = 8/3$, find $\int_{-1}^{0} x^2 dx$

- 3. Given that $\int_{-1}^{2} x^2 dx = 3$ and $\int_{-1}^{2} x dx = 3/2$, and $\int_{-1}^{2} 1 dx = 3$, compute $\int_{-1}^{2} 5x + 2 x^2 dx$
- 4. Suppose that the velocity of an object along a line at time t is given by $v(t) = t^3 t$. Find both the displacement and the total distance traveled from t = -1 to t = 1.

Analytic Geometry and Calculus I

Quiz 5.4

Due Wednesday

IN	ame

1. Compute the following definite and indefinite integrals:

(a)
$$\int_0^{\pi/4} \frac{\sec(x)}{\cos(x)} dx$$
.

(b)
$$\int_1^e \frac{2x^2 - 3x + 2}{x} dx$$
.

(c)
$$\int \frac{d}{dx} [x^2 + 1] dx$$

2. Find the following:

(a)
$$\frac{d}{dx} \left[\int_0^x t e^t dt \right]$$

(b)
$$\frac{d}{dx} \left[\int_0^{x^3} t e^t dt \right]$$

(c)
$$\frac{d}{dx} \left[\int_{\ln(x)}^{x^3} t e^t dt \right]$$