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Abstract

It is well known that many noncompact hyperbolic 3-manifolds are topologically

complements of links in the 3-sphere. We extend this phenomenon to dimension 4 by

exhibiting an example of a noncompact hyperbolic 4-manifold that is topologically the

complement of 5 tori in the 4-sphere. We also exhibit examples of hyperbolic manifolds

that are complements of 5n tori in a simply-connected 4-manifold with Euler charac-

teristic 2n. All the examples are based on a construction of Ratcliffe and Tschantz,

who produced 1171 noncompact hyperbolic manifolds with Euler characteristic 1. Our

examples are finite covers of the Ratcliffe-Tschantz manifold with the biggest symmetry

group.

1 Introduction

Let Hn be the n-dimensional hyperbolic space and let G be a discrete subgroup of IsomHn,
the isometries of Hn. If G is torsion-free, then M = Hn/G is a hyperbolic manifold of
dimension n. In this paper, the term “hyperbolic manifold” will always be used for a manifold
that is also complete, noncompact and has finite volume. Such a manifold M is the interior
of a compact manifold with boundary M (see, for example, [1]). Every boundary component
of M is a compact flat (Euclidean) manifold, i.e. a manifold of the form Rn−1/K, where K
is a discrete subgroup of IsomRn−1, the isometries of Rn−1.

We say that M is a (codimension-2) complement in a closed n-manifold N if M = N −A,
where A is a closed (n − 2)-submanifold of N that has a tubular neighborhood and has as
many components as ∂M . Typically one would like N to be a familiar manifold, such as Sn.

It is a well-known fact (see [9, 11]) that many hyperbolic 3-manifolds are complements
of links in the 3-sphere. The main purpose of this paper is to generalize this phenomenon
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to dimension 4, that is, to provide an example of a hyperbolic 4-manifold that is a comple-
ment inside the 4-sphere and to provide some examples where the hyperbolic manifolds are
complements in other simply-connected 4-manifolds.

In [5] we considered the general problem of when M may be thought of as a complement.
Let M = N − A be a complement. Then every component of ∂M must be an S1-bundle
since it will be the boundary of a tubular neighborhood of a component of A, and every
component of A must be a flat (n− 2)-manifold, because flat manifolds are S1-bundles only
over flat manifolds (see [5]). In the 3-dimensional case, all components of ∂M are either tori
or Klein bottles, both of which are S1-bundles over S1, so every hyperbolic 3-manifold is a
complement. A slight problem arises for n ≥ 4 where there exist (n − 1)-dimensional flat
manifolds that are not S1-bundles. It was shown by Nimershiem in [6] that every closed,
connected flat 3-manifold is a boundary component of some hyperbolic 4-manifold , so not
every hyperbolic 4-manifold is a complement.

We now focus on the case n = 4. Again, let M = N − A. Then components of A
can only be tori or Klein bottles. Furthermore, we proved in [5] that for a fixed N there
exist at most finitely many nonisometric hyperbolic manifolds that are complements in N .
This is a consequence of the following three facts: that necessarily χ(M) = χ(N), that
Vol(M) = 4π2/3 ·χ(M) (Gauss-Bonnet theorem for hyperbolic 4-manifolds), and that there
are finitely many nonisometric hyperbolic 4-manifolds with volume less than a given number
(Wang’s theorem, [10]). Therefore, there exist only finitely many hyperbolic manifolds that
are complements in S4 and they must have Euler characteristic 2.

A good part for the reason that some hyperbolic 4-manifolds have not already been
identified as complements is that there is a small number of examples in the literature that
are given in such a way that their topology can be handled more or less easily. One way to give
a hyperbolic manifold that allows for relatively easy computation of topological invariants
is to represent it as a hyperbolic polyhedron whose faces have been identified via hyperbolic
isometries. Such constructions have been done by Ratcliffe and Tschantz [8], Nimershiem [6]
and the author [4] and we looked for complement candidates among them, primarily among
examples with low Euler characteristic.

Ratcliffe and Tschantz used a computer to find different ways of pairing the sides of a
24-faced hyperbolic polyhedron that yield a hyperbolic manifold. They found 1171 noniso-
metric examples with Euler characteristic 1, most of them unorientable. In our search for
complement examples we tested some suitable Ratcliffe-Tschantz manifolds (their boundary
components had to be S1-bundles) and found an example whose double cover is a complement
in S4. The main result of this paper is the following:
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Theorem 4.3 Let M be the Ratcliffe-Tschantz manifold no. 1011. Then M is a com-
plement of 5 tori in a 4-manifold N with π1N = Z2. The orientable double cover of M is
the complement of 5 tori in S4. Furthermore, the orientable double cover has cyclic covers
of any index n that are complements of 4n + 1 tori in a simply-connected closed manifold N
with χ(N) = 2n.

There are two examples by the author that have Euler characteristic 2, P/Φ1 and P/Φ2,
in the notation of [4]. It turns out that P/Φ2 has boundary components that are not S1-
bundles. We also showed that P/Φ1 is a complement in a 4-manifold with fundamental group
Z2 and hence has a double cover that is a complement in a simply-connected 4-manifold.
Nimershiem’s examples are complements when all their ends are S1-bundles, however, they
have higher Euler characteristics and have not been studied by the author from the point of
view of being a complement in a familiar 4-manifold.

The large number (1171) of Ratcliffe-Tschantz manifolds may give rise to other examples
of complements in the 4-sphere. However, a criterion in §5 rules out most of these manifolds,
leaving about 346 (hand count) of them eligible for having a double cover that is a comple-
ment in the 4-sphere. At this point, we can claim only one example with that property, the
mentioned manifold no. 1011.

Acknowledgement. Practically all of the work in this paper was done while the author
held a temporary position at the George Washington University. I take this opportunity to
thank the GWU Department of Mathematics for providing a very congenial atmosphere and
being very supportive of all my efforts during the years I was there.

2 Hyperbolic manifolds as complements

The following theorem summarizes some results from [5] that we will use in this paper.

Theorem 2.1 Let E = Rn−1/K be a compact flat (n − 1)-manifold, where K is a discrete
subgroup of IsomRn−1 = {Ax + a|A ∈ O(n), a ∈ Rn−1}. Then E is an S1-bundle over a
manifold B if and only if there exists a translation t ∈ K such that 〈t〉 is a normal subgroup
of K and t is not a power of any element of K other than t±1. If the translation is given by
x 7→ x + v the normality of 〈t〉 can be expressed as Av = ±v for every A such that Ax + a is
an element of K. Furthermore if n − 1 6= 4, 5 (we are interested in n − 1 = 3 in this paper)
the manifold B above is a flat manifold. 2

Let M = Hn/G be a hyperbolic n-manifold that is a complement in some closed manifold
N , that is M = N − A as in §1. Let ∂M = E1 ∪ · · · ∪ Em, where each Ei is a flat (n − 1)-
manifold. For simplicity, we often imprecisely say the Ei’s are boundary components of M
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as well. We recall that π1Ei
inclusion
−−−−−→ π1M is injective. Every boundary component of M

corresponds to a conjugacy class of parabolic subgroups in G, that is, groups consisting only
of parabolic hyperbolic isometries that fix a point v in ∂Hn. Parabolic isometries also fix
every horosphere centered at v. Inside the horosphere, whose inherited metric is isometric
to Rn−1, they act as Euclidean isometries. Each Ei is an S1-bundle over a component Bi

of A. Let ti denote the element of π1Ei ⊂ π1M that represents the fiber of the S1-bundle
Ei. Then, by Theorem 2.1, each ti must be a translation in this group and 〈ti〉 is a normal
subgroup of π1Ei. We call such an element of π1Ei a normal translation. Furthermore, if ti

is not a power of any other element of K other than t±1
i we call ti primitive in π1Ei. We

have

Proposition 2.2 Let M be a complement in N and let ∂M = E1 ∪ · · ·∪Em. If t1, . . . , tm ∈
π1M represent fibers of the S1-bundles E1, . . . , Em then π1N = π1M/ 〈〈t1, . . . , tm〉〉, where
〈〈A〉〉 denotes the normal closure of a subset A ⊂ π1M . In other words, if we have a
presentation for M , the presentation for N is obtained by adding relators t1 = 1, . . . , tm = 1.

Proof. We may assume ∂M has only one component E — if there are more, the claim
follows by induction. Let t represent the S1-fiber in E and let B be the base manifold in
the S1-bundle. Let D be the 2-disc bundle over B obtained by filling out every S1-fiber by
a disc so that ∂D = E and N = M ∪E D and let p : D → B be the fiber projection. By van
Kampen’s theorem

π1N = π1M ∗ π1D/
〈〈

i1∗(e)i2∗(e)
−1, e ∈ π1E

〉〉

,

where i1 : E → M and i2 : E → D are inclusions. However p∗ : π1D → π1B is
an isomorphism and we may consider π1E as a subgroup of π1M so the above group is
π1M ∗ π1B/ 〈〈ep∗(e)

−1, e ∈ π1E〉〉. The inclusion map π1M → π1M ∗ π1B induces a map

π1M/ 〈〈t〉〉
φ
−→ π1M ∗ π1B/ 〈〈ep∗(e)

−1, e ∈ π1E〉〉. We show that φ is an isomorphism. It is
surjective, since for every element b ∈ π1B we have b = p∗(e), hence [b] = [ep∗(e)

−1p∗(e)] =
[e] ∈ im φ.

Now suppose that φ([g]) = 1 for some g ∈ π1M . Then g =
∏

xi(eip∗(ei)
−1)±1x−1

i where
ei ∈ π1E and xi ∈ π1M ∗ π1B is a product of elements in π1M and π1B. However, note that
a conjugate by b ∈ π1B, where b = p∗(e), is byb−1 = e(e−1p∗(e))y(e−1p∗(e))

−1e−1, so if y has
the form

∏

gj(ejp∗(ej)
−1)±1g−1

j , gj ∈ π1M then

byb−1 =
∏

bgj(ejp∗(ej)
−1)±1g−1

j b−1 =
∏

e(e−1p∗(e))gj(ejp∗(ej)
−1)±1g−1

j (e−1p∗(e))
−1e−1 =

∏

e(e−1p∗(e))e
−1 (egj)(ejp∗(ej)

−1)±1(egj)
−1 e(e−1p∗(e))

−1e−1
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which has the same form as y since e ∈ π1M . By repeatedly applying this observation we
can transform the representation of g to g =

∏

gi(eip∗(ei)
−1)±1g−1

i , gi ∈ π1M . This equation
is in π1M ∗π1B: in order to satisfy it, all the elements of π1B, namely p∗(ei)

−1, must cancel.
Then either p∗(ei) = 1 for all i which implies that ei = tki, so g =

∏

git
±kig−1

i in which case
[g] = 1 in π1M/ 〈〈t〉〉, or there exists an i so that the term between p∗(ei)

±1 and p∗(ei+1)
±1

cancels. It is not hard to see (there are four cases depending on the exponents ±1) that the
product then reduces to a product of the same form with one fewer term, so the argument
is finished by induction. 2

In order to simplify computations showing that a proposed M is a complement, we need
the following propositions.

Proposition 2.3 Let X̃
p
−→ X be the covering space of a manifold X corresponding to a

normal subgroup H of G = π1X. If E is a path-connected subset of X (e.g. a submanifold),

and K = i∗(π1(E)), where E
i
−→ X is the inclusion, then the number of path-components of

p−1(E) is equal to the index of KH in G. Note that this is the same as the index in G/H of
the image of K under the quotient map G → G/H.

Proof. Choose x0 ∈ E and let Y = p−1(x0). If we choose y0 ∈ Y there is a standard
correspondence G/H ↔ Y given by gH ↔ (the endpoint of the lift of g starting at y0)

that we can compose to a map G/H
φ
−→ Y/ ∼, where y1 ∼ y2 if both are in the same

path-component of p−1(E). Suppose φ(g1H) = φ(g2H). Then loops g1 and g2 lift to paths
starting with y0 and ending with y1 and y2 respectively and there is a path k̃ from y1 to y2 in
p−1(E). Taking k = p ◦ k̃ gives a loop in E whose homotopy class is in K and the lift of g1k
has the same endpoint as g2, thus g1kH = g2H, thus g−1

2 g1 = hk−1 for some h ∈ H. Now
hk−1 = k−1khk−1h, so g−1

2 g1 = k−1h1, for some h1 ∈ H because H is normal. Hence g1 and
g2 are in the same class of KH. (Note that, due to normality of H, we can write any element
of KH as kh for some k ∈ K and h ∈ H.) Conversely, if g1KH = g2KH then g2 = g1kh for
some k ∈ K, h ∈ H. Then the lifts of g1k and g2 starting at y0 have the same endpoint y2,
but since we may assume that the loop k lies in E then the endpoint y1 of g1 is connected to
y2 by a lift of k starting at y1, but this path is in p−1(E), so φ(g1H) = φ(g2H). Therefore, φ
induces a bijection between the set of path components of p−1(E) (same as Y/ ∼) and the
set of left cosets of KH.

Note also that the number of preimages of x0 that are in the same path-component of
p−1(E) is equal to the index of H in KH, which, by the standard isomorphism theorem
KH/H ∼= K/(K ∩ H) is equal to the index of K ∩ H in K. 2
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Proposition 2.4 Let M be a hyperbolic manifold with ∂M = E1 ∪ · · · ∪ Em and let t1 ∈
π1E1, . . . , tm ∈ π1Em be normal translations. Suppose that π1M/ 〈〈t1, . . . , tm〉〉 is a finite
group of order l and that ti is primitive in π1Ei ∩ 〈〈t1, . . . , tm〉〉 for every i = 1, . . . , m.

Then M has an l-fold normal cover that is a complement inside a simply-connected closed
manifold N .

Proof. Set G = π1M , H = 〈〈t1, . . . , tm〉〉, Ki = π1Ei, i = 1, . . . , m and let t1, . . . , tm be
normal translations satisfying conditions of the theorem and let Φ = G/H, where q : G → Φ
is the quotient map. For every i, we may choose a finite set Ri ⊂ Ki that is a transversal (i.e.
a set of coset representatives) of Ki ∩ H in Ki and a finite set Si ⊂ G that is a transversal
of KiH in G. Any element g ∈ G may be written as risih for some ri ∈ Ri, si ∈ Si, h ∈ H.
The conjugate g−1tig can then be written as h−1s−1

i r−1
i tirisih = h−1s−1

i t±1
i sih since ti is a

normal translation. The elements of 〈〈t1, . . . , tm〉〉 are products of form
∏

g−1
j t

lj
ij
gj which

can be written as
∏

h−1
j s−1

j r−1
j t

lj
ij
rjsjhj =

∏

h−1
j s−1

j t
±lj
ij

sjhj where hj ∈ H, sj ∈ Sij and
rj ∈ Rij . Therefore, if 〈〈A〉〉H denotes the normal closure in H of a subset A of H, then
H = 〈〈t1, . . . , tm〉〉 =

〈〈

s−1
i tisi | si ∈ Si, i = 1, . . . , m

〉〉

H
.

By Proposition 2.3, p−1(Ei) has [Φ : q(Ki)] = |Si| components, i = 1, . . . , m. Restricting p
to each of the components we get a covering of Ei corresponding to the subgroup Ki∩H ⊂ Ki.
Normality of translations t1, . . . , tm and the fact that each of them is primitive in Ki ∩H en-
sure that each component of p−1(Ei) is a fiber bundle and that we may choose as a fiber any
lift of a loop representing the element ti that is contained in p−1(Ei). Therefore, the cover of
M corresponding to H ⊂ π1M is going to be a complement in some closed manifold N . What
is π1N? As seen above, components of p−1(Ei) are in 1-1 correspondence with elements of
Si and a fiber in each component represents the element s−1

i tisi, where si ranges through Si.
Inserting 2-disc-bundles that close off components of p−1(Ei) gives us N , whose fundamental
group, according to Proposition 2.2, is H/

〈〈

s−1
i tisi | si ∈ Si, i = 1, . . .m

〉〉

H
= H/H = 1. 2

3 Moving around a tiling of Hn

Let G be a discrete subgroup of Isom Hn that is generated by side-pairings of its finite-sided
fundamental polyhedron P (see [7] or [4]). If S is a side of P , let s be the side-pairing that
sends S to its pair S ′ (thus, sS = S ′). Then s−1 will pair S ′ to S. For every point x in P
let [x], the cycle of x, be the set of all points in P that are obtained by sending x around P
via side-pairing transformations. As in [7], for every x ∈ P let ω(x) be the measure of the
“spatial angle” that P subtends at x, that is ω(x) = Vol(B(x, r) ∩ P )/ VolB(x, r), where
B(x, r) is a ball around x with radius r small enough so that B(x, r) intersects only the sides
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on which x lies. Set ω[x] =
∑

y∈[x] ω(y). Then G will be a torsion free group if and only if

ω[x] = 1 for every x ∈ P (see [7]). Note that for a polyheron P with ideal vertices [x] is
well-defined for an ideal vertex as well.

Since P is a fundamental polyhedron, Hn = ∪g∈G gP where g1(int P ) ∩ g2(int P ) = ∅ for
g1 6= g2 and any two polyhedra g1P and g2P either do not intersect or intersect along one
of their k-faces. Imagine a piecewise-linear path whose every vertex is in int gP for some
g ∈ G and whose edges join vertices in adjacent translates of P so that the edge between
two consecutive vertices passes through the interiors of the sides that the adjacent translates
share. If the translates are g1P and g2P and we exited through side g1S of the polyhedron
g1P , then we entered g2P through side g2S

′, where S ′ is the side paired to S under the side-
pairing of P . If s is the transformation that pairs S to S ′, then g2 = g1s

−1. Thus, if we start
in translate gP and the path exits, sequentially, through the translates of sides S1, . . . , Sm

of P , then the vertices of the path are in translates gP , gs−1
1 P , gs−1

1 s−1
2 P ,...,gs−1

1 . . . s−1
m P .

Let H be a finite-index subgroup of G with transversal X, so G = ∪x∈X Hx. Then
Q = ∪x∈X xP is a fundamental polyhedron for H (elements of X can be chosen so that Q
is connected). How are sides of Q paired in order to generate H? If R is a side of Q, then
R = xS for some side S of P . Let f be the transformation that pairs R to a side R′ of Q.
Adjacent to Q on the other side of R′ is fQ and R′ = yS ′ for some y ∈ X. Now in the
tiling by P , translates fxP and yP meet along paired sides of P and one gets from yP to
fxP by exiting through yS ′. By the above we get fx = ys, which implies ysx−1 = f ∈ H
making y the coset representative for Hxs−1. Therefore, side xS gets paired to side yS ′ via
f = ysx−1, where S ′ is the pair of S under side-pairing s of P and y is the element of the
transversal of H that represents the coset Hxs−1.

We now turn to the special case where G is generated by reflections in the sides of a
polyhedron P . The following proposition is inspired by and generalizes a claim from [8] that
was specific to the polyhedra P and Q Ratcliffe and Tschantz were considering.

Proposition 3.1 Let G be generated by reflections in the sides of a polyhedron P and let
H be a finite-index subgroup of G so that its transversal is a finite group K. (In other
words, G = HK and H ∩ K = 1.) Then the fundamental polyhedron for H is Q = ∪k∈KkP
which is invariant under K. Furthermore, any side R of Q is paired to a side R′ of Q by
a transformation of the form kr, where k ∈ K is such that k(R) = R′ and r is a reflection
in R. Alternatively, R is paired to R′ by a transformation of the form r′k, where r′ is a
reflection in R′ and k ∈ K such that k(R) = R′.

Proof. Applying the above discussion to this situation, we see that side R = k1S is paired
to side R′ = k2S

′ via f = k2sk
−1
1 , where s is a reflection in S. Then f = (k2k

−1
1 )(k1sk

−1
1 ),

but r = k1sk
−1
1 is a reflection in k1S = R and k = k2k

−1
1 is an element of K that sends
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R = k1S to R′ = k2S, so f = kr. Now we note that kr = krk−1k and r′ = krk−1 is the
reflection in kR = R′. 2

In this paper we will be interested in finding generators of parabolic subroups of G that
correspond to fundamental groups of boundary components of the manifold. Let v be an
ideal vertex of P and let Xv be the finite set of transformations in G that send vertices in
the cycle [v] to v. Thus for w ∈ [v] there is a unique x ∈ Xv so that xw = v. The subgroup
Gv = stabv G = {g ∈ G | gv = v} is the fundamental group of the boundary component
of M = Hn/G that corresponds to the ideal vertex v. Since the manifold is complete, Gv

consists only of parabolic elements, so it will fix every horosphere centered at v. Choose a
sufficiently small horosphere C centered at v that intersects only those sides of P in whose
closure v is. Then Gv is a group of Euclidean isometries of C ∼= Rn−1. At other vertices in [v]
we choose horospheres x−1C, where x ∈ Xv. The set (x−1C) ∩ P is a Euclidean polyhedron
in the horosphere x−1C whose sides are intersections of sides of P with the horosphere x−1C.

The fundamental polyhedron for Gv and its side-pairing transformations are found in
much the same way as the fundamental polyhedron of a finite-index subgroup of G, above.
First of all, the fundamental polyhedron for Gv is Pv = (∪x∈Xv

xP )∩C where we can choose
elements of Xv so that the above union is connected. Let x1S be a side of x1P ∩C, v1 ∈ [v]
so x1v1 = v; let s be the side-pairing transformation that sends S to S ′, and let v2 = sv1.
(Note that v1 is on side S and v2 is on side S ′.) Then x1S ∩ C will be paired to x2S

′ ∩ C
and the side-pairing transformation is x2sx

−1
1 — note that this transformation is in Gv.

We will make use of the following proposition. For simplicity of notation, when we discuss
the fundamental polyhedron of Gv, we are assuming the intersection of the polyhedron P
and its sides with the horosphere C so we drop the “∩C”.

Proposition 3.2 Let G, P , K, H and Q be as in Proposition 3.1, v an ideal vertex of P ,
Gv = stabvG, and let Xv be as above. Then Qv = ∪x∈Xv

xQ is the fundamental polyhedron for
Gv. Let side xS of Qv be paired to yS ′ via f = ysx−1 where x, y ∈ Xv. Consider a piecewise
linear path (as above) that starts in xQ, goes to yQ and exits through side yS ′ of yQ. Suppose
the path from xQ to yQ passes through different translates x1Q = xQ, x2Q, . . . , xmQ, yQ of
Q, exiting every time through side xiSi of xiQ and finally exiting through yS ′. If x = y set
m = 0. This means that y = xs−1

1 s−1
2 . . . s−1

m , where si is the transformation that pairs Si.
Then the side-pairing f can be written as f = (qqm . . . q1)x(k−1

1 . . . k−1
m k−1)x−1 where qi

is the reflection in the plane xiSi, q is the reflection in plane yS ′, and ki and k are elements
of K in the decompositions of side pairings si and s−1, respectively, into form kr as in
Proposition 3.1.

In other words, as we go from xP to ysP we pass through a sequence of hyperplanes
containing v. The side-pairing that sends xS to yS ′ is the product of reflections in those
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hyperplanes and the conjugate of products of elements of K that correspond to the side-
pairings of sides whose translates we exit through.

Proof. Let x = 1. We first prove the claim s−1
1 . . . s−1

m = (qm . . . q1)(k
−1
1 . . . k−1

m ) by induc-
tion on m. Note that x2 = s−1

1 , x3 = s−1
1 s−1

2 and so on. For m = 1 we have s−1
1 = (k1r1)

−1 =
r1k

−1
1 , and r1 is a reflection in x1S1 = S1. Suppose the claim holds for m − 1. Then

s−1
1 . . . s−1

m−1s
−1
m = (s−1

1 . . . s−1
m−1)r

−1
m (sm−1 . . . s1)(s

−1
1 . . . s−1

m−1)k
−1
m = qm(s−1

1 . . . s−1
m−1)k

−1
m =

qm(qm−1 . . . q1k
−1
1 . . . k−1

m−1)k
−1
m . Here we used that (s−1

1 . . . s−1
m−1)r

−1
m (sm−1 . . . s1) is a reflec-

tion in the plane s−1
1 . . . s−1

m−1Sm = xmSm. Of course now s−1
1 . . . s−1

m s = s−1
1 . . . s−1

m (s−1)−1

and the claim follows from what we just proved since s−1 = kr.
For a general x notice that the element of G sending x to ys = xs−1

1 . . . s−1
m s is given

by xs−1
1 . . . x−1

m sx−1 = (xqqm . . . q1x
−1)(xk−1

1 . . . k−1
m k−1x−1). However, if qi is a reflection in

s−1
1 . . . s−1

i−1Si then xqix
−1 is a reflection in xs−1

1 . . . s−1
i−1Si = xiSi and the claim is proved. 2

Remark 3.3 Note that k−1
1 . . . k−1

m k−1 is an element of K that preserves Q, the vertex
x−1v and x−1C, hence x(k−1

1 . . . k−1
m k−1)x−1 preserves v, C and xQ, so the side-pairing is a

transformation that keeps xQ fixed followed by reflections in the above hyperplanes which
contain v.

4 Example of a complement in the 4-sphere

We now recall Ratcliffe and Tschantz’s 24-sided polyhedron (see [8]) and a side-pairing that
yields an unorientable manifold with Euler characteristic 1.

We use the ball model of hyperbolic 4-space H4, so H4 = B4, the unit 4-ball, with the

differential metric ds2 = 4|dx|2

(1−|x|2)2
. Hyperplanes in H4 are round 3-spheres in R4 that are

perpendicular to ∂B4.
Consider the 24 spheres of radius 1 that are centered at points whose two coordinates

are ±1 and the other two are 0. Each of those spheres is perpendicular to ∂H4 and any two
of them either intersect at a right angle, are tangential with tangent point on ∂H4 or are
disjoint. The spheres thus determine 24 hyperplanes that intersect at right angles. Let Q be
the polyhedron that is the intersection of the 24 half-spaces determined by the hyperplanes,
where we always take the half-space that contains the origin. We will denote the sides of Q
and the hyperplanes that they lie on by S∗∗∗∗, where “∗ ∗ ∗∗” is a string with two zeroes and
two +’s or –’s that determines the center of the sphere on which the hyperplane lies. For
example, S+0−0 is the side lying on the sphere centered at (1, 0,−1, 0).

The polyhedron Q has ideal vertices v∗000 = (±1, 0, 0, 0), v0∗00 = (0,±1, 0, 0), v00∗0 =
(0, 0,±1, 0), v000∗ = (0, 0, 0,±1) and v∗∗∗∗ = (±1/2,±1/2,±1/2,±1/2), where the “∗” in the
subscript is always “+” or “−”. The polyhedron has no real vertices.
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Note that two sides intersect when the strings describing them have equal nonzero entries
in one position and the positions of the remaining nonzero entries are different. Two sides
touch at ∂H4 when they have equal nonzero entries in one position and they have opposite
nonzero entries in another position or if the positions where they have nonzero entries are
complementary. Furthermore, an ideal vertex will be on a side if its euclidean distance from
the center of the sphere defining the side is 1. (For example, S0−+0 and S+−00 intersect,
S0−+0 and S0+0+ are disjoint, S0−+0 and S0−−0 touch at v0−00, and S0−+0 and S−00− touch
at v−−+−).

The intersection of the horosphere centered at an ideal vertex v with the hyperplanes
that contain v looks like a cube because this horosphere intersects six sides that intersect
either at right angles or meet only at v, hence their intersection with the horosphere are
pairs of parallel planes that intersect at right angles. Due to symmetry of Q, the intersection
of Q with C will be a cube rather than a general rectangular box.

Let P denote the intersection of Q with the positive hexadecant and let K be the order-16
group generated by reflections in hyperplanes xi = 0, i = 1, . . . , 4. Elements of K we denote
as k∗∗∗∗ where every “∗” is a “+” or a “−”. It is clear that Q = KP = {kP | k ∈ K}.

Ratcliffe and Tschantz investigated Γ4
2 ⊂ IsomHn, the congruence two group of in-

tegral Lorentzian 5 × 5 matrices (see [8] for definition) and found that it is isomorphic
to the group generated by reflections in the sides of the polyhedron P . Thus, Γ4

2 =
〈k−+++, k+−++, k++−+, k+++−, r++00, r+0+0, r0++0, r+00+, r0+0+, r00++〉, where r∗∗∗∗ is a reflec-
tion in the side S∗∗∗∗. If G is a finite-index torsion-free subgroup of Γ4

2, then K acts on the
set Γ4

2/G freely so K must divide [Γ4
2 : G]. If G has minimal index 16, then K is a set of

coset representatives so Q will be a fundamental polyhedron for G, and G will be generated
by side-pairings of Q. Ratcliffe and Tschantz showed that any side-pairing transformation
of Q that takes side R to side R′ must be of form kr or r′k, where k ∈ K takes R to R′ and
r and r′ are reflections in R and R′, respectively. (This claim follows from Proposition 3.1.)
Thus, a side-pairing transformation will be specified by giving an element of K.

Ratcliffe and Tschantz used a computer to find all the side-pairings of Q for which
ω[x] = 1 for every x ∈ ∂Q. They are the side-pairings that yield a hyperbolic manifold. The
list of 1171 nonisometric manifolds that they obtained, along with their side-pairings is in
their paper [8]. They also found that all sides of Q labeled by a string with the two zeroes
in the same place have the same corresponding k.

A specialization of Proposition 3.2 will be useful:
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Proposition 4.1 Let G, Q, and K be as in proposition 3.2, specialized to any of the
Ratcliffe-Tschantz examples. In this case K = Z4

2, in particular, it is abelian. Then, with the
set-up from Proposition 3.2, a side-pairing of Qv can be written in form
f = (qqm . . . q1)x(k1 . . . km)x−1 = (qqm . . . q1)(pj . . . p1)(k1 . . . kmk)(pj . . . p1)

−1 where p1, . . . , pj

are reflections in the hyperplanes that one passes through by going from Q to xQ.

Proof. We only need to rewrite x(k−1
1 . . . k−1

m k−1)x−1. From Proposition 3.2 we can
write x = (pj . . . p1)(h

−1
1 . . . h−1

j ) by following a path from Q to xQ, where h1, . . . , hj are

appropriate elements of K. Commutativity of K now reduces x(k−1
1 . . . k−1

m k−1)x−1 to
(pj . . . p1)(k

−1
1 . . . k−1

m k−1)(pj . . . p1)
−1 and the fact that every element of K has order 2 allows

us to write ki instead of k−1
i . 2

Remark 4.2 Note that k1 . . . kmk preserves v since it preserves w = h−1
1 . . . h−1

j v and the
two transformations commute. Each pi is a reflection in a hyperplane containing v which will
make (pj . . . p1)(k1 . . . kmk)(pj . . . p1)

−1 easy to visualize: it is nothing but the transformation
k1 . . . kmk moved to (pj . . . p1)Q.

We now show that the orientable double cover of manifold no. 1011 (call it M) in Ratcliffe
and Tschantz’s list is a complement in the 4-sphere and that it has covers of every even index
that are complements in some other simply-connected 4-manifold. Of the 1171 Ratcliffe and
Tschantz’s examples, we chose to try this one because it has the largest symmetry group,
which slightly simplifies the calculations.

First of all, the side-pairing for M is given by transformations that we name a, b, . . . , k, l
as follows (r is always the reflection in the originating side):

S++00
a
−→ S−+00 S+−00

b
−→ S−−00 a, b = k−+++r

S+0+0
c
−→ S+0−0 S−0+0

d
−→ S−0−0 c, d = k++−+r

S0++0
e
−→ S0−−0 S0+−0

f
−→ S0−+0 e, f = k−−−−r

S+00+
g
−→ S−00− S+00−

h
−→ S−00+ g, h = k−−−−r

S0+0+
i
−→ S0−0+ S0+0−

j
−→ S0−0− i, j = k+−++r

S00++
k
−→ S00+− S00−+

l
−→ S00−− k, l = k+++−r

The presentation for the group G generated by these side-pairings is obtained by per-
forming an edge-chase (see e.g. [4]). Since there are no real vertices, every 2-face of Q (an
“edge”, or a codimension-2 face) has an ideal vertex. We will use fundamental polyhedra
Qv, as above, to find generators and normal translations of π1Ei, where ∂M = E1 ∪ · · ·∪E5.
These polyhedra will also help with the edge chase, since each of their codimension-2 faces
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is the intersection of a codimension-2 face of Q with a horosphere C and can be used to
represent an edge in the cycle. All the edges in a cycle have a vertex v that is an element of
the cycle of some vertex, so all the edges of a cycle will be represented by a codimension-2
face of some polyhedron Qv. Furthermore, since every 2-face of Q has an ideal vertex that
is among v∗000, v0∗00, v00∗0 and v000∗, the codimension-2 faces of polyhedra Qv+000

, Qv0+00
,

Qv00+0
and Qv000+

will represent all the edges from all cycles.
Figure 1 contains pictures of Qv+000

, Qv0+00
, Qv00+0

, Qv000+
. Using Proposition 4.1 we can

determine the side-pairings of each Qv and the generating translations of the translation
subgroup of Gv as well as which ones among them are normal.

We explain the method on the example Qv+000
. The only other vertex in the cycle of

the vertex v+000 is v−000 = av+000. Hence Qv+000
= (Q ∪ a−1Q) ∩ C will be a union of two

side-by-side cubes, it is the top rectangular box depicted in Fig. 1. The strings labeling
the sides of Qv+000

come from the labeling of sides of Q (sides on the right cube are actually
translates of the sides of Q with the indicated label). The symbol v−000 above the right
cube denotes that the right cube is a translate (by a−1) of Q intersected with a horosphere
centered at v−000.

From Fig. 1 we can read off the cycles of edges. For example, look at S+0−0 ∩ S+00+. We
see that

S+00+ ∩ S+0+0
c
−→ S+0−0 ∩ S+00+

g
−→ S−00− ∩ S−0+0

d
−→ S−0−0 ∩ S−00−

g−1

−−→ S+00+ ∩ S+0+0

and this edge cycle contributes the relation g−1dgc = 1 to the presentation of G.
Now for the side-pairing transformations of Qv+000

. Note that under the natural identi-
fication C ∼= R3 the origin of Rn−1 may be taken to be the center of the cube Q ∩ C. In
Fig. 1 we indicate the directions of the coordinate axes at left — they apply to only the left
cubes in the diagram, as the orientation of the right cubes is governed by the side-pairing.

Side S+0+0 is paired to side S+0−0 via c. Since cv+000 = v+000 we see that c ∈ Gv+000
. By

Proposition 4.1 c is the composite of the reflection in S+0−0 and k−1
++−+, which is a reflection in

the plane x3 = 0, making c a translation in the x3-direction (but with opposite orientation).
We use similar reasoning to see that a−1S−0+0 is paired to a−1S−0−0 via a translation in the
x3-direction.

Side S+−00 is paired to side S−−00 via b. Since bv+000 = v−000 then S+−00 will be sent to
a−1S−−00 by an element of Gv+000

. This transformation will be the composite of reflections
in S++00 and a−1S−−00 (respectively, the center dividing plane and the right side of the top
box in Fig. 1, respectively) and of k−+++k−+++ = 1, so will thus be a translation in the x2

direction.
Side S+00+ is paired to side S−00− via g. Since gv+000 = v−000 there is an element of Gv+000

that sends S+00+ to a−1S−00−. This transformation is a composite of reflections in S++00
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v-000v+000

+0+0

+00- -00-

-00++00+

+-00
++00

-0+0

-0-0+0-0

--00
-+00

v0-00v0+00

++00

0+-0 0--0

0-+00++0

0+0-
0+0+

+-00

--00-+00

0-0-
0-0+

v00-0v00+0

00++

0-+0 0--0

0+-00++0

-0+0
+0+0

00-+

00--00+-

-0-0
+0-0

v000-v000+

0+0+

-00+ -00-

+00-+00+

00-+
00++

0+0-

0-0-0-0+

00--
00+-

1 a-1
c

h-1

a-1b

h-1g

1 i-1
a

f-1

i-1j

f-1e

1 c-1
k

f

c-1d

fe

1 k-1
i

h

k-1l

hg

x3

x2

x4

x1

x4

x3

x4

x1

x2

x2

x3

x1

Figure 1: Fundamental polyhedra for Gv+000
, Gv0+00

, Gv00+0
, Gv000+

and generators of their
translation subgroups.
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translation

translation

glide reflections

(reflect in shaded plane)

Figure 2: Side-pairing pattern for fundamental polyhedra Qv+000
, Qv0+00

, Qv00+0
, Qv000+

and a−1S−00− and k−+++k−−−− = k+−−−. Hence, its rotational part will be the composite
of reflections in x2 = 0, x4 = 0, which are parallel to S++00 and a−1S−00−, respectively,
and k+−−−|C. The composite is thus a reflection in x3 = 0. It is now clear that S++00 is
sent to a−1S−00− by a glide reflection, that is, a translation composed with a reflection in a
plane containing the translation. The plane is x3 = 0, the plane going through the middle
of the two cubes and parallel to the front side. We use similar reasoning to see that S+00−

is paired to a−1S−00+ via a glide reflection, where the reflecting is again performed in the
plane x3 = 0.

The pattern of side-pairings, which is the same for each of the rectangular boxes Qv+000
,

Qv0+00
, Qv00+0

and Qv000+
is illustrated on Fig. 2 — arrows indicate translations and it is noted

if a translation is composed with any reflections. We can see that Gv+000
will be generated

by three elements: the translation c that pairs the front and back sides, the translation a−1b
that pairs the left and right sides and the glide reflection a−1g that pairs half of the top side
with half of the bottom side. (The second glide reflection is simply the composite of the
inverse of the glide reflection mentioned and the second translation.)

The actual elements that generate the group are obtained by the method discussed at the
beginning of § 3. A graph is convenient for this purpose: each vertex represents a translate
of Q and the label on the vertex indicates by which element Q was moved. for example, the
horizontal edges in the top graph show that if we pass through S++00, we arrive in a−1Q;
passing further through a−1S−−00 gets us in a−1bQ.

Since the group of rotational parts of Gv+000
has order 2, the subgroup of translations has

index 2 in Gv+000
, which means that Qv+000

∪ (a−1g)Qv+000
is a fundamental polyhedron for

this subgroup. It is visually clear that this polyhedron will fill out R3 if it is moved around
by composites of translations t1 = c, t2 = a−1b and t3 = h−1g, hence those three translations
generate the subgroup of translations (h−1g is a translation using the same explanation as
a−1b). The normal translations among them are those whose vectors are ±1 eigenvectors of
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1 a-1

i-1

e-1
a-1k-1

i-1c-1

e-1g a-1k-1a

i-1c-1i

a-1k-1ak

i-1c-1ic

v++++ v-+++ v-++- v+++-

v+-+-v--+-v--++v+-++

v+--+ v---+ v---- v+---

v++--v-+--v-+-+v++-+

v++++

+00+

0++0

+0+0

0+0+

00++
++00

Figure 3: Fundamental polyhedron for Gv++++
and generators of its translation subgroup

the reflection in x3 = 0, which are multiples of t1 and any combination of t2 and t3.
Fig. 3 shows the fundamental polyhedron Qv++++

. The smaller cube illustrates how the
faces are labeled on the portion of Qv++++

labeled v++++ ; this labeling implies the labeling
on every other cube that makes up Qv++++

. For example, the front side on cube v−−−− is
labeled −00−, we simply insert zeroes in the appropriate places into the string labeling v∗∗∗∗.
Using techniques as above (or see §5) it is easy to see that the left and right sides of the
rectangular box, as well as the bottom and top sides are paired by translations. The side
pairing pattern for the back side is illustrated in Fig. 4 and the pattern for the front side
is identical. Note that shaded rectangles are paired by a glide reflection. To see this, note
that S0++0 is paired to S0−−0 via e. Since ev++++ = v−−−− the back side of the cube labeled
v++++ is paired to the back side of the cube v−−−−. As in 4.1, take a path from the cube
labeled v++++ that goes two steps to the right, then two steps down and then exits out the
back of the cube labeled v−−−−. The composite of the reflections in the first four planes that
we pass through gives a translation in the direction of arrow in Fig. 4, composing with a
reflection in the back plane makes it a glide translation. We also have to compose this with
a conjugate of a certain element of K which turns out to be 1 because the only element of K
that sends v++++ to itself is 1. The translation subgroup of Gv++++

is obtained in the same
way as for Gv+000

above.
We obtain all the relations and all the generators of the translation subgroups for each
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A B E F

HGDC

 A'

 H' G'

 F' E'

 C'

 B'

 D'

glide reflections

(reflection is in the

plane containing

the sides)

Figure 4: Side-pairing pattern of front and back sides of Qv++++

vertex cycle in the way described above. Here are the relations:

b−1d−1bc = 1
a−1d−1ac = 1
b−1ha−1g = 1
b−1ga−1h = 1

g−1dgc = 1
h−1dhc = 1































from Qv+000

j−1b−1ja = 1
i−1b−1ia = 1
j−1fi−1e = 1
j−1ei−1f = 1

e−1bea = 1
f−1bfa = 1































from Qv0+00

d−1l−1dk = 1
c−1l−1ck = 1

d−1f−1c−1e = 1
d−1ec−1f−1 = 1

e−1lek = 1
flf−1k = 1































from Qv00+0

l−1j−1li = 1
k−1j−1ki = 1

l−1h−1k−1g = 1
l−1gk−1h−1 = 1

g−1jgi = 1
hjh−1i = 1































from Qv000+

Recall that every edge of Q has an ideal vertex that is among v∗000, v0∗00, v00∗0 and v000∗,
hence every cycle of edges of Q is represented by a cycle of edges of one of Qv+000

, Qv0+00
,

Qv00+0
and Qv000+

. Cycles of edges of Qv++++
will not add any new relations, so they can be

omitted.

16



Now we list all the generating translations for each parabolic subgroup.

subgroup generating translations normal translations

Gv+000

t1 = c
t2 = a−1b
t3 = h−1g

nt1
mt2 + nt3

Gv0+00

t1 = a
t2 = i−1j
t3 = f−1e

nt1
mt2 + nt3

Gv00+0

t1 = k
t2 = c−1d
t3 = fe

nt1
mt2 + nt3

Gv000+

t1 = i
t2 = k−1l
t3 = hg

nt1
mt2 + nt3

Gv++++

t1 = e−1g
t2 = a−1k−1ak
t3 = i−1c−1ic

nt1
mt2 + nt3

We now choose translations in each boundary component that we want to represent
the fiber of the S1-bundle. We simply go for the easiest expression in order to simplify
computation. Choose cn, a, k, i and e−1g and compute π1M/ 〈〈cn, a, k, i, e−1g〉〉. Substituting
a, k, i = 1 into the four groups of relators we get the following four respective groups:

b−1d−1bc = 1
d = c

b−1hg = 1
b−1gh = 1

g−1dgc = 1
h−1dhc = 1































b = 1
j−1fe = 1
j−1ef = 1







l = 1
d−1f−1c−1e = 1
d−1ec−1f−1 = 1







j = 1
l−1h−1g = 1
l−1gh−1 = 1
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Taking into account now that l, b, j, e−1g = 1 and c = d, we get the relations:

h = g−1, h = g, g = e, f = e−1, g−1cgc = 1, c−1ec−1e = 1

which immediately implies that the group is generated by c and e, and that e2 = 1, e−1cec = 1
and c−1ec−1e = 1. The last two equations are both equivalent to e−1ce = c−1 so the
presentation of the group is 〈c, e | cn = 1, e2 = 1, e−1ce = c−1〉 = 〈c | cn = 1〉 � 〈e | e2 = 1〉 =
Zn � Z2, where Z2 acts on Zn by inversion in the semidirect product Zn � Z2. Letting
H = 〈〈cn, a, k, i, e−1g〉〉, we note that cn is primitive in H∩Gv+000

, a is primitive in H∩Gv0+00

and so on. Proposition 2.4 now tells us that M has a 2n-fold cover M̃ that is a complement
in a simply-connected manifold N .

When n = 1 the two-fold cover of M is actually the orientable double cover of M ,
since via the homomorphism π1M → π1M/ 〈〈c, a, k, i, g−1e〉〉 ∼= Z2 the orientation reversing
generators e, f, g, h of G are sent to the nonidentity element of Z2 while the orientation
preserving generators a, b, c, d, i, j, k, l are sent to the identity element. Furthermore, χ(N) =
χ(double cover of M) = 2. Since H4N = H0N = Z and H1N = H3N = 0 this means
H2N = 0. Now due to Freedman’s (see [2, 3]) classification of simply-connected 4-manifolds,
the only simply-connected 4 manifold N with H2N = 0 is the 4-sphere.

When n > 2, let π1M
q
−→ Zn � Z2 be the quotient homomorphism. The orientation-

reversing generators of π1M are sent to the generator of Z2, so the subgroup of orientation-
preserving transformations of π1M is q−1(Zn). Since ker q ⊂ q−1(Zn), the 2n-fold cover
corresponding to ker q covers the orientable double cover which corresponds to q−1(Zn). The
group of deck transformations is q−1(Zn)/ ker q ∼= Zn so M̃ is a cyclic cover of the double
orientable cover.

We use Proposition 2.3 to find the number of components of M̃ . The subgroup Gv+000

is generated by translations c and a−1b and an orientation-reversing glide reflection. Those
transformations are respectively sent to c, 1, e ∈ Zn � Z2, hence the index of q(Gv+000

) in
Zn � Z2 is 1. Similarly, we see that q(Gv0+00

) = q(Gv00+0
) = q(Gv000+

) = q(Gv++++
) = 〈e〉 so

the index of each of those subgroups of Zn � Z2 is n. Therefore, M̃ has 4n + 1 boundary
components.

Thus we have proved

Theorem 4.3 Let M be the Ratcliffe-Tschantz manifold no. 1011. Then M is a comple-
ment of 5 tori in a 4-manifold N with π1N = Z2. The orientable double cover of M is the
complement of 5 tori in S4. Furthermore, the orientable double cover has cyclic covers of
any index n that are complements of 4n + 1 tori in a simply-connected closed manifold N
with χ(N) = 2n. 2
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5 A necessary condition

With a wealth of Ratcliffe-Tschantz examples available, one would like to know whether
many have a double cover that is a complement in S4 or if this is a rare occurence. We give
a criterion that rules out an example from having such a double cover that (unfortunately)
applies to most Ratcliffe-Tschantz examples.

Proposition 5.1 Let M be a hyperbolic manifold that has a double cover which is a com-
plement in a simply-connected closed manifold. Then there exist translations t1, . . . , tm so
that π1M/ 〈〈t1, . . . , tm〉〉 = Z2.

Proof. Let H ⊂ π1M be the subgroup of π1M corresponding to the double cover in
question. Since the double cover is a complement there exist translations normal in H so
that H/ 〈〈t1, . . . , tm〉〉H = 1 (see proposition 2.2). However, H is normal in π1M (it has
index 2) so H = 〈〈t1 . . . tm〉〉H ⊂ 〈〈t1 . . . tm〉〉 ⊂ H which immediately gives 〈〈t1 . . . tm〉〉 = H
and the conclusion of the proposition.

Note that the double cover of M may have more boundary components than M , hence,
in general, m is greater of equal to the number of boundary components of M . 2

Now we consider a Ratcliffe-Tschantz manifold M and use the notation of §4. Let G =
π1M and let Z6

2 be the abelian group whose summands are generated by the 6 order-2
elements r∗∗00, r∗0∗0, r0∗∗0, r∗00∗, r0∗0∗, r00∗∗. Note that only here “∗” is a symbol and
not a slot allowing other symbols. As we have mentioned in §4, G ⊂ Γ4

2, where Γ4
2 is

generated by reflections in the sides of the polyhedron P whose angles are all π/2. There is
a homomorphism φ : Γ4

2 → Z6
2 given by k∗∗∗∗ 7→ 0, r++00 7→ r∗∗00, r+0+0 7→ r∗0∗0, etc. We

restrict φ to G and note that φ : G → Z6
2 is surjective: the side-pairing for side S++00 maps

to r∗∗00, the side-pairing for S+0+0 maps to r∗0∗0 and so on.
Referring to the 24-sided polyhedron Q from §4, let v be any of the ideal vertices that has

only one positive nonzero position. If C is a horosphere centered at v, then C ∩Q is a cube
and translates of Q that intersect give a tiling of C ∼= R3 by cubes. Note that the parallel
sides of the cube Q∩C are sides of the polyhedron Q that have nonzero entries in the same
position, so their side-pairings have the same k in the kr decomposition of proposition 3.1.

In what follows, like in proposition 4.1, we drop “∩C”. If we start a path in the cube
Q that exits through side S, goes through the adjacent cube xQ and then exits through
the parallel side opposite the entry side, finishing in translate gQ, the transformation g is
equal to q2q1k

−1
1 k−1

2 according to proposition 4.1. However, since side-pairings for parallel
sides have the same K-part, k1 = k2, so we get g = q2q1, where q1 and q2 are reflections
in planes that we passed through. It then follows that g is a translation. Also, φ(g) = 0
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since both q1 and q2 map to the same generator of Z6
2 (every reflection qi is a conjugate of

r++00, r0+0+, . . . , r00++ by elements of K).
Therefore, translations by two lengths of the side of Q in each of the three directions

parallel to the edges of Q are contained in the translation subgroup of Gv. Let Tv denote the
group of translations they generate. Since the fundamental polyhedron for Gv is two side-
by-side cubes and the fundamental polyhedron for Tv is eight cubes, we get [Gv : Tv] = 4.
Note also that φ(Tv) = 0.

Similarly, if v is the ideal vertex v++++ and C a horosphere centered at v, then Q ∩ C
is again a cube whose parallel sides have nonzero entries in complementary positions. A
path that goes perpendicularly through a side of the cube and continues in a straight line
until it has crossed 4 sides finishes in the translate gQ, where (proposition 4.1 again) g =
q4q3q2q1k

−1
1 k−1

2 k−1
3 k−1

4 . However, since the K-part of a side-pairing is the same for every side
that has nonzero entries in fixed positions, we have k1 = k3 and k2 = k4, so g = q4q3q2q1

owing to commutativity of K = Z4
2 and the fact that every element of K has order 2. This

makes g a translation by four lengths of a side of Q as it is the composite of four reflections
in parallel planes. Also, φ(g) = 0 because Φ(ki) = 0, Φ(q1) = Φ(q3) and Φ(q2) = Φ(q4).
Again let Tv be the subgroup of translations generated by translations by four cube widths
in the three directions parallel to the edges of the cube Q. The fundamental polyhedron of
Tv comprises 64 cubes, while the fundamental polyhedron of Gv contains either 16 cubes, if
|[v]| = 16, or 8 cubes if |[v]| = 8. Thus, [Gv : Tv] = 4 or 8, respectively. Again note that
φ(Tv) = 0.

Theorem 5.2 Let M be a Ratcliffe-Tschantz manifold and let T denote the set of all
parabolic translations in G = π1M . Viewing Z6

2 as a Z2-vector space, if the dimension
of the subspace generated by φ(T ) is less than 5, then M does not have a double cover that
is a complement in S4.

In particular, let M be a 5-cusped Ratcliffe-Tschantz manifold, let nX denote the number
of boundary components (corresponding to cusps) of M of type X, X = A, B, F, G, H, I, J
and let α(M) = 2nA + 2nB + nG + nH . If α(M) < 5 then M does not have a double cover
that is a complement in S4.

For a 6-cusped Ratcliffe-Tschantz manifold M , let n′
X denote the number of boundary

components of type X that correspond to the two cycles of the ideal vertices v±,±,±,± (the last
two letters in Ratcliffe and Tschantz’s table of 6-cusped manifolds are the ones that identify
boundary component types corresponding to those vertices) and let nX denote the number
of boundary components of type X that correspond to the 4 cycles of the remaining ideal
vertices. Set α′(M) = 2nA + 2nB + nG + nH + 2n′

A + 2n′
B + n′

F + n′
G + n′

H + n′
I + n′

J . If
α′(M) < 5 then M does not have a double cover that is a complement in S4.
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Proof. We prove the contrapositive. Suppose M has a double cover that is a complement
in a simply-connected manifold and let G = π1M . According to Proposition 5.1 there exist
translations t1, . . . , tm so that π1M/ 〈〈t1, . . . , tm〉〉 = Z2. The homorphism φ : G → Z6

2

defined above induces a surjective homomorphism G/ 〈〈t1 . . . tm〉〉 → Z6
2/ 〈φ(t1) . . . φ(tm)〉 →

Z6
2/ 〈φ(T )〉 so dim Z6

2/ 〈φ(T )〉 ≤ 1 which gives dim 〈φ(T )〉 ≥ 5.
For the remaining two parts, we notice first that if the type of the boundary component

is F , I or J and Gv is its corresponding parabolic subgroup, then the index of the translation
subgroup of Gv is 4. Hence, if the index of Tv in Gv is 4, then the translation subgroup of
Gv is equal to Tv.

Now suppose that M is a 5-cusped Ratcliffe-Tschantz manifold that has a double cover M̃
that is a complement in S4. By Proposition 5.1 there exist t1, . . . , tm so that G/ 〈〈t1, . . . , tm〉〉 =
Z2. Any translation ti that is in a parabolic subgroup corresponding to a boundary compo-
nent of type F , I or J maps to 0 via φ by the above discussion, since the index of Tv in Gv

is always 4 in the 5-cusped case. Boundary components of type G and H are unorientable,
so their lifts in M̃ are orientable and thus have only one component; this means that only
one translation in the collection t1, . . . , tm is in the parabolic subgroup corresponding to a
boundary component of type G or H. Boundary components of type A or B could have
two components in their lifts and each component could have a different choice for fiber of
the S1-fiber bundle, therefore, at most two translations in the collection t1, . . . , tm are in
the parabolic subgroup corresponding to each boundary component of type A or B. There-
fore, the number of nonzero elements of φ(t1), . . . , φ(tm) is at most 2nA + 2nB + nG + nH .
Again, surjectivity of the induced map G/ 〈〈t1 . . . tm〉〉 → Z6

2/ 〈φ(t1) . . . φ(tm)〉 gives us that
2nA + 2nB + nG + nH ≥ dim 〈φ(t1), . . . , φ(tm)〉 ≥ 5 proving the contrapositive of the second
claim.

If M is a 6-cusped Ratcliffe-Tschantz manifold, we reason in the same fashion. For a
vertex in a cycle of v±,±,±± the index of Tv in Gv is 8, hence Tv has index 2 in the translation
subgroup of Gv. Therefore, even if the boundary component type is F , I or J , there could be
a nonzero element corresponding to it in the collection φ(t1), . . . , φ(tm) and, as above, there
could be two if the boundary component is orientable. Thus, the number of nonzero elements
in φ(t1), . . . , φ(tm) is at most 2nA + 2nB + nG + nH + 2n′

A + 2n′
B + n′

F + n′
G + n′

H + n′
I + n′

J

and the proof is finished as in the 5-cusped case. (Note that, since the boundary component
types corresponding to the two cycles of v±,±,±,± are always equal, only one of the numbers
n′

A, n′
B, n′

F , n′
G, n′

H , n′
I , n′

J is nonzero.) 2
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Example 5.3 Proposition 5.2 rules out easily many Ratcliffe-Tschantz examples to get that
at most about 346 (of 1171) can have double cover complements in S4.

First of all, any nonorientable example that contains a boundary component of type F
cannot have a double cover complement in S4, since the boundary component will lift to
two copies of boundary components of type F which are not S1-bundles. A hand count
that rules out all nonorientable examples with a boundary component of type F and rules
out all manifolds that satisfy the second or the third part of Proposition 5.2 leaves 18 (of
22) 5-cusped orientable manifolds, about 287 (of 1068) 5-cusped nonorientable and 41 (of
81) 6-cusped nonorientable manifolds eligible to be complements inside S4. For example, if
Mk denotes the Ratcliffe-Tschantz manifold(s) ranging through k’s, we have α(M19−22) = 4,
α(M811−865) ≤ 2, α′(M1101−1104) = 4.

Example 5.4 There are many Ratcliffe-Tschantz manifolds that can be ruled out using
the first, stronger, part of Proposition 5.2 by computing dim φ(T ). For example, while
α(M51) = 7, it is not hard to compute that dim φ(T ) = 4. Similarly, α(M545) = 6, and
α′(M1162) = 10, yet dim φ(T ) is 3 and 4, respectively.

We have used the first part Proposition 5.2 to investigate many potential candidates for
complements in S4 and have been able to rule most of them out. Some examples remain
that cannot be excluded in this way and they are possible candidates for complements.
However, we feel that only a few Ratcliffe-Tschantz examples will turn out to have double
cover complements in S4 and have confirmed only the one from Theorem 4.3.

6 Remark

In the proof of Theorem 4.3 we used Freedman’s theory which applies to the topological
category, that is, we can only claim that the double cover of M from Theorem 4.3 embeds in
a space N that is homeomorphic to S4. At this time it is still unknown whether a manifold
that is homeomorphic to S4 is also diffeomorphic to the S4 with the standard differentiable
structure (the “differentiable Poincaré conjecture in dimension 4”). If we had a handle
decomposition for N , diffeomorphism with S4 can be verified by using Kirby calculus to
transform the Kirby diagram of N to the Kirby diagram of the standard S4. It is not
too hard to produce a Kirby diagram of the manifold if it is given by a side-pairing of a
polyhedron (spherical, euclidean or hyperbolic). Then one can obtain a Kirby diagram for
N , which turns out to be rather complicated (it has 23 1-handles, 53 2-handles, 34 3-handles
and 5 4-handles). A computation using Kirby moves shows that N really is diffeomorphic
to S4 — we plan to write the details in a future paper.

Hence, we have produced a complicated Kirby diagram of S4 obtained in a seemingly
nontrivial, top-down fashion (as opposed to a bottom-up method where one would start with
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a simple Kirby diagram of the standard S4 and make it more complicated via Kirby moves).
While of course this does not give a counterexample to the differentiable Poincaré conjecture
in dimension 4, it seems to indicate that a possible counterexample given by a Kirby diagram
may indeed be very complicated.
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