Mathematical Reasoning - Exam 2
 MAT 312, Fall 2020 - D. Ivanšić

Name:
Show all your work!

1. (14pts) Prove using induction: for every natural number n, $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
2. (14pts) Prove: for any integer n, the number $\frac{2}{3} n^{3}+\frac{4}{3} n$ is an integer.
3. (16pts) We know that $\sqrt{2}$ is irrational. Are the following statements true? Justify with a counterexample or a proof.
a) There exists a real number x such that $\frac{1}{x+\sqrt{2}}$ is rational.
b) If x is rational, then $\frac{1}{x+\sqrt{2}}$ is irrational.
4. (18pts) Consider the statement: for all $a, b \in \mathbf{Z}, 5 \mid a^{2}+2 b^{2}$ if and only if $5 \mid a$ and $5 \mid b$.
a) Write the statement as a conjunction of two conditional statements.
b) Determine whether each of the conditional statements is true, and write a proof, if so.
c) Is the original statement true?
5. (14pts) We have shown a similar statement on homework: for every integer n, if $7 \mid n^{2}$, then $7 \mid n$. Use this proposition to show that $\sqrt{7}$ is irrational.
6. (10pts) Sketch all points (x, y) in the plane that satisfy $|y-x|<3$. (Hint: what inequalities without absolute value is the inequality $|u|<a$ equivalent to?)
7. (14pts) Prove both statements for all real numbers x (one is easy):
a) if $x<-1$, then $x+\frac{1}{x+1}<0 ; \quad$ b) if $x>-1$, then $x+\frac{1}{x+1} \geq 1$.

Bonus. (10pts) Let $0 \leq a_{0}, a_{1}, \ldots, a_{n} \leq 9$ be integers.
a) Use $(\bmod 3)$ calculus to show that
$a_{n} \cdot 10^{n}+a_{n-1} \cdot 10^{n-1}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0} \equiv a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0}(\bmod 3)$
b) Use a) to show that a natural number is divisible by 3 if and only if the sum of its digits is divisible by 3 .

