Consider the following sentences. If a sentence is a statement, determine whether it is true (and justify your answer). If it is an open sentence, find its truth set.

- 1. (2pts) The sky is up and the ground is down.
- **2.** (2pts) For every $x \in \mathbf{R}$, $x^3 > 0$ or 2 + 5 = 7.

3. (3pts) If
$$f'(x) = x^2$$
, then $f(x) = \frac{x^3}{3}$.

- **4.** (4pts) (universal set=**Z**) $x^2 + x < 20$
- **5.** (3pts) (universal set=**R**) $x^4 + x^2 = 0$

Negate the following statements.

- 6. (3pts) I am a poor boy and I don't need sympathy.
- 7. (3pts) If they send me away, then they teach me how to be sensible.

8. (8pts) Use a truth table to prove that $(P \lor Q) \land \neg Q \equiv \neg (P \Longrightarrow Q)$. (Use however many columns you need.)

P	Q				
Т	Т				
Т	F				
F	Т				
F	F				

9. (12pts) Use previously proven logical equivalences to prove the equivalence $P \Longrightarrow (Q \land R) \equiv (P \Longrightarrow Q) \land (P \Longrightarrow R)$. Do not use a truth table.

10. (4pts) Write the converse and contrapositive of the statement: if $x^3 - x - 7 > 0$, then x > 0.

Converse:

Contrapositive:

11. (8pts) Suppose the following statements are true: If the wedding is in China, the bride wears red. The wedding is in China or the bride wears red.

Determine truth value of the following statement and justify: the bride wears red.

12. (4pts) Use set builder notation to write the set $\{4, 8, 16, 32, 64, \ldots\}$.

13. (10pts) A function $f : \mathbf{R} \to \mathbf{R}$ is *bounded above* if there exists an $M \in \mathbf{R}$ such that for every $x \in \mathbf{R}$, $f(x) \leq M$.

a) Write the definition using symbols for quantifiers.

- b) Negate the definition using symbols for quantifiers.
- c) Finish the sentence: "A function $f : \mathbf{R} \to \mathbf{R}$ is not bounded above if ..."

14. (7pts) Prove: if m is an even integer, and n is an odd integer, then m + n is an odd integer.

15. (12pts) Let **R** be the universal set. The following is an open sentence in x:

$$(\exists y \in \mathbf{R})(x - y^2 = 3)$$

a) If x = 0, is the statement true?

b) If x = 5, is the statement true?

c) Find the truth set (the x's) of the above statement.

16. (15pts) We will call an integer n type-0, type-1 or type-2 integer if it can be written in the form n = 3k, n = 3k + 1 or n = 3k + 2, respectively, for some integer k. Prove that if m is a type-1 integer and n is a type-2 integer, then $m^2 - n^2 + n$ is a type-2 integer. Start with a know-show table if you find it helpful.

Bonus. (10pts) Show by that quantifiers are not "commutative" by showing that one of the statements below is true and the other is false (justify).

 $(\exists y \in \mathbf{R}) (\forall x \in \mathbf{R}) (x > y)$

 $(\forall x \in \mathbf{R}) (\exists y \in \mathbf{R}) (x > y)$