We are familiar with function notation like $f(x) = x^3 - 3x^2 + x - 7$, which give us the rule of association. But there are a few other things to keep in mind.

Definition. Let A, B be sets. A *function* from set A to set B is a rule that associates to every element of the set A exactly one element of the set B.

We write $f : A \to B$ (f is a function from A to B).

A is called the *domain* of f, A = dom(f). B is called the *codomain* of f, B = codom(f)

If $a \in A$, f(a) is called the *image* of a under f. If $b \in B$, and $x \in A$ is such that f(x) = b, we say that x is a *preimage* of b under f.

The range of f is the set $\{f(x) \mid x \in A\}$, also called the image of the set A under f.

Note. range $(f) \subseteq \operatorname{codom}(f)$, also range $(f) = \{y \in B \mid (\exists x \in A)(f(x) = y)\}$.

Example. We often use arrow diagrams to represent functions. Let $A = \{1, 2, 3, 4\}, B = \{10, 11, 12, 13, 14\}.$

				set of
		$x \mid f(x)$	y	preimages of y
		1	10	
		2	11	
		3	12	
		4	13	
			14	
$\operatorname{dom}(f) =$	$\operatorname{codom}(f) =$	$\operatorname{range}(f) =$		

Example. Let $f : \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 - 4x - 21$.

	set of			
y	preimages of y			
5				
0				
-25				
-30				

From graph: range(f) =

Note: $y_0 \in \operatorname{range}(f) \iff$ the horizontal line $y = y_0$ intersects the graph $\iff x^2 - 4x - 21 = y_0$ has a solution

With the second equivalence, we can find the range algebraically:

Example. The *number of divisors* function $d : \mathbf{N} \to \mathbf{N}$ is given by

d(n) = the number of natural divisors of n

				set of
n	divisors of n	d(n)	y	preimages of y
7			1	
12			2	
27			3	
30			4	
			n	

 $\operatorname{range}(d) =$

Example. Let $\mathbf{Z}_4 = \{0, 1, 2, 3\}$, and define functions $f, g : \mathbf{Z}_4 \to \mathbf{Z}_4$.						
f(x)	$=x^{2}$	$\pmod{4}$	$g(x) = x^2 - 3x + $	-1 (mod	4)	
r	f(r)	a(r)			set of preimages	set of preimages
$\begin{array}{c c} x & f(x) & g(x) \\ \hline & & & \end{array}$	g(x)	g(x)	y	of y under f	of y under g	
0				0		
1		range	(f) =	0		
1		range	(a) =	1		
2		lange	(9) -	0		
				2		
3				3		

Example. Let $\mathbf{Z} \times \mathbf{Z} = \{(a, b) \mid a, b \in \mathbf{Z}\}$, where $(a_1, b_1) = (a_2, b_2)$ if and only if $a_1 = a_2$ and $b_1 = b_2$.

Define $f : \mathbf{Z} \times \mathbf{Z} \to \mathbf{Z}$ by f(m, n) = 2m + n. Determine and visualize the set of preimages of 3.

Definition. Two functions f and g are equal if: 1) dom(f) = dom(g)2) codom(f) = codom(g)3) f(x) = g(x) for every $x \in dom(f)$.

Example. Functions $f, g : \mathbf{Z}_4 \to \mathbf{Z}_4$ from an earlier example are not equal.

Example. Are functions $f, g : \mathbf{R} \to \mathbf{R}, f(x) = x, g(x) = \sqrt{x^2}$ equal?

Example. Are functions $f(x) = \frac{x^2 - 4}{x - 2}$, g(x) = x + 2 equal?

This does not prevent us from writing $\frac{x^2-4}{x-2} = x+2$, because such equations are meant to be valid for all x for which both sides are defined.

Mathematical Reasoning — Lecture notes MAT 312, Spring 2023 — D. Ivanšić

6.3 Injections, Surjections, Bijections

We consider some basic properties of functions.

Definition. Let $f : A \to B$ be a function. We call f an *injection* (or a *one-to-one* or *injective* function), if for every $x_1, x_2 \in A$, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.

Example. Let $A \subseteq \mathbf{R}$ and $f : A \to \mathbf{R}$ be a strictly increasing function. Then f is injective.

Example. Which of the following is an injective function?

a) f(x) = 3x + 1 b) $g(x) = x^2$ c) $h(x) = \frac{3x + 4}{x - 2}$

Note: negation of injectivity is: there exist $x_1, x_2 \in A$ such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$.

Since proofs using \neq are inconvenient (cannot apply rules similar to equations), we usually use the contrapositive statement to the definition of injectivity, that is: for every $x_1, x_2 \in A$, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Use this formulation to check injectivity of functions in the example.

Note: Domain matters. If we consider $g: [0, \infty) \to \mathbf{R}$, it is injective.

Definition. Let $f : A \to B$ be a function. We call f an *surjection* (or *onto* or *surjective* function), if range(f) = codom(f). This is equivalent to: for every $y \in B$, there exists an $x \in A$ such that f(x) = y.

Note: negation of surjectivity is: there exists a $y \in B$ such that for all $x \in A$, $f(x) \neq y$.

Example. Which of the following is a surjective function?

a)
$$f(x) = 3x + 1$$
 b) $g(x) = x^2$ c) $h(x) = \frac{3x + 4}{x - 2}$

Note: We can fix absence of surjectivity by altering the codomain.

 $g: [0,\infty) \to [0,\infty)$ is surjective $h: \{x \mid x \neq 2\} \to \{y \mid y \neq 3\}$ is surjective

Example. Let $f : \mathbf{Z} \to \mathbf{Z}$, f(x) = 2x. Show f is injective, but not surjective.

Example. Construct an $f : \mathbb{Z} \to \mathbb{Z}$ that is surjective, but not injective.

Definition. A function $f : A \to B$ is called a *bijection* (or *one-to-one and onto* or *bijective* function), if f is injective and surjective.

Example.

 $f: \mathbf{R} \to \mathbf{R}, f(x) = 3x + 1 \text{ is bijective}$ $g: [0, \infty) \to [0, \infty), g(x) = x^2 \text{ is bijective}$ $h: \{x \mid x \neq 2\} \to \{x \mid x \neq 3\}, h(x) = \frac{3x + 4}{x - 2} \text{ is bijective}$

Usually, if a function is not injective or surjective, this can be fixed by altering the domain or codomain.

Example. sin : $\mathbf{R} \to \mathbf{R}$ is neither injective or surjective

Proposition. Let A be any set. Then there does not exist a surjection $A \to \mathcal{P}(\mathcal{A})$. (A surjection $\mathcal{P}(\mathcal{A}) \to \mathcal{A}$ is easy to construct.)

Proof.

Note: A consequence of this is that there does not exist a "biggest set," and that some infinite sets are "bigger" than others.