Mathematical Reasoning - Lecture notes MAT 312, Spring 2023 - D. Ivanšić

6.1, 6.2 Introduction to Functions

We are familiar with function notation like $f(x)=x^{3}-3 x^{2}+x-7$, which give us the rule of association. But there are a few other things to keep in mind.

Definition. Let A, B be sets. A function from set A to set B is a rule that associates to every element of the set A exactly one element of the set B.

We write $f: A \rightarrow B$ (f is a function from A to B).
A is called the domain of $f, A=\operatorname{dom}(f)$.
B is called the codomain of $f, B=\operatorname{codom}(f)$
If $a \in A, f(a)$ is called the image of a under f.
If $b \in B$, and $x \in A$ is such that $f(x)=b$, we say that x is a preimage of b under f.
The range of f is the set $\{f(x) \mid x \in A\}$, also called the image of the set A under f.
Note. $\operatorname{range}(f) \subseteq \operatorname{codom}(f)$, also range $(f)=\{y \in B \mid(\exists x \in A)(f(x)=y)\}$.

Example. We often use arrow diagrams to represent functions.
Let $A=\{1,2,3,4\}, B=\{10,11,12,13,14\}$.

x	$f(x)$	
1	y	set of preimages of y
2	10	
3	11	
4	12	
	13	

$\operatorname{dom}(f)=\quad \operatorname{codom}(f)=\quad$ range $(f)=$

Example. Let $f: \mathbf{R} \rightarrow \mathbf{R}, f(x)=x^{2}-4 x-21$.

	set of
y	preimages of y
5	
0	
-25	
-30	

From graph: $\operatorname{range}(f)=$
Note: $y_{0} \in \operatorname{range}(f) \Longleftrightarrow$ the horizontal line $y=y_{0}$ intersects the graph $\Longleftrightarrow x^{2}-4 x-21=y_{0}$ has a solution

With the second equivalence, we can find the range algebraically:

Example. The number of divisors function $d: \mathbf{N} \rightarrow \mathbf{N}$ is given by

$$
d(n)=\text { the number of natural divisors of } n
$$

n	divisors of n	$d(n)$
7		
12		
27		
30		

	set of
y	preimages of y
1	
2	
3	
4	
n	

range $(d)=$

Example. Let $\mathbf{Z}_{4}=\{0,1,2,3\}$, and define functions $f, g: \mathbf{Z}_{4} \rightarrow \mathbf{Z}_{4}$.
$f(x)=x^{2}(\bmod 4) \quad g(x)=x^{2}-3 x+1(\bmod 4)$

Example. Let $\mathbf{Z} \times \mathbf{Z}=\{(a, b) \mid a, b \in \mathbf{Z}\}$, where $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$ if and only if $a_{1}=a_{2}$ and $b_{1}=b_{2}$.

Define $f: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z}$ by $f(m, n)=2 m+n$. Determine and visualize the set of preimages of 3 .

Definition. Two functions f and g are equal if:

1) $\operatorname{dom}(f)=\operatorname{dom}(g)$
2) $\operatorname{codom}(f)=\operatorname{codom}(g)$
3) $f(x)=g(x)$ for every $x \in \operatorname{dom}(f)$.

Example. Functions $f, g: \mathbf{Z}_{4} \rightarrow \mathbf{Z}_{4}$ from an earlier example are not equal.

Example. Are functions $f, g: \mathbf{R} \rightarrow \mathbf{R}, f(x)=x, g(x)=\sqrt{x^{2}}$ equal?

Example. Are functions $f(x)=\frac{x^{2}-4}{x-2}, g(x)=x+2$ equal?

This does not prevent us from writing $\frac{x^{2}-4}{x-2}=x+2$, because such equations are meant to be valid for all x for which both sides are defined.

Mathematical Reasoning - Lecture notes
MAT 312, Spring 2023 - D. Ivanšić

6.3 Injections, Surjections, Bijections

We consider some basic properties of functions.
Definition. Let $f: A \rightarrow B$ be a function. We call f an injection (or a one-to-one or injective function), if for every $x_{1}, x_{2} \in A$, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Example. Let $A \subseteq \mathbf{R}$ and $f: A \rightarrow \mathbf{R}$ be a strictly increasing function. Then f is injective.

Example. Which of the following is an injective function?
a) $f(x)=3 x+1$
b) $g(x)=x^{2}$
c) $h(x)=\frac{3 x+4}{x-2}$

Note: negation of injectivity is: there exist $x_{1}, x_{2} \in A$ such that $x_{1} \neq x_{2}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Since proofs using \neq are inconvenient (cannot apply rules similar to equations), we usually use the contrapositive statement to the definition of injectivity, that is: for every $x_{1}, x_{2} \in A$, if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$.

Use this formulation to check injectivity of functions in the example.

Note: Domain matters. If we consider $g:[0, \infty) \rightarrow \mathbf{R}$, it is injective.

Definition. Let $f: A \rightarrow B$ be a function. We call f an surjection (or onto or surjective function), if range $(f)=\operatorname{codom}(f)$. This is equivalent to: for every $y \in B$, there exists an $x \in A$ such that $f(x)=y$.

Note: negation of surjectivity is: there exists a $y \in B$ such that for all $x \in A, f(x) \neq y$.

Example. Which of the following is a surjective function?
a) $f(x)=3 x+1$
b) $g(x)=x^{2}$
c) $h(x)=\frac{3 x+4}{x-2}$

Note: We can fix absence of surjectivity by altering the codomain.
$g:[0, \infty) \rightarrow[0, \infty)$ is surjective $\quad h:\{x \mid x \neq 2\} \rightarrow\{y \mid y \neq 3\}$ is surjective

Example. Let $f: \mathbf{Z} \rightarrow \mathbf{Z}, f(x)=2 x$. Show f is injective, but not surjective.

Example. Construct an $f: \mathbf{Z} \rightarrow \mathbf{Z}$ that is surjective, but not injective.

Definition. A function $f: A \rightarrow B$ is called a bijection (or one-to-one and onto or bijective function), if f is injective and surjective.

Example.

$f: \mathbf{R} \rightarrow \mathbf{R}, f(x)=3 x+1$ is bijective
$g:[0, \infty) \rightarrow[0, \infty), g(x)=x^{2}$ is bijective
$h:\{x \mid x \neq 2\} \rightarrow\{x \mid x \neq 3\}, h(x)=\frac{3 x+4}{x-2}$ is bijective
Usually, if a function is not injective or surjective, this can be fixed by altering the domain or codomain.

Example. sin : $\mathbf{R} \rightarrow \mathbf{R}$ is neither injective or surjective

Proposition. Let A be any set. Then there does not exist a surjection $A \rightarrow \mathcal{P}(\mathcal{A})$. (A surjection $\mathcal{P}(\mathcal{A}) \rightarrow \mathcal{A}$ is easy to construct.)

Proof.

Note: A consequence of this is that there does not exist a "biggest set," and that some infinite sets are "bigger" than others.

