We work in a universal set U.

Recall: $x \in A$: x is an element of A $x \notin A$: x is not an element of A \emptyset denotes a set with no elements, the *empty set* or *null set*

Definition. Let A and B be sets with elements from a universal set U. We define:

1) A is a subset of B, $A \subseteq B$, if for all $x \in U$, if $x \in A$, then $x \in B$.

2) A is equal to B, A = B, if for all $x \in U$, $x \in A$ if and only if $x \in B$.

We write $A \not\subseteq B$, $A \neq B$ for negations of those statements. We also write $A \subset B$, and say A is a proper subset of B, if $A \subseteq B$ and $A \neq B$.

Note. A = B is equivalent to $A \subseteq B$ and $B \subseteq A$.

Example. Let

 $U = \mathbf{N}, \quad A = \{1, 3, 5, 7\}, \quad B = \{n \in \mathbf{N} \mid n \text{ is odd and } n < 9\}, \quad C = \{n \in \mathbf{N} \mid n \text{ is odd}\}.$ State the relationships among these sets.

Example. Let $U = \mathbf{Z}$, $A = \{n \in \mathbf{Z} \mid 2 \mid n\}$, $B = \{n \in \mathbf{Z} \mid 4 \mid n\}$. Show that $B \subset A$ and $A \not\subseteq B$.

Note. The negation of $(\forall x \in U)(x \in A \Longrightarrow x \in B)$ is $(\exists x \in U)(x \in A \text{ and } x \notin B)$.

We often use Venn diagrams to picture relationships between sets.

$$A \subseteq B$$

Definition. We define the following operations on sets. Let $A, B \subseteq U$.

Intersection of A and B	Union of A and B
$A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}$	$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$

Set difference of A and B

$$A - B = \{x \in U \mid x \in A \text{ and } x \notin B\}$$
Complement of A
 $A^c = \{x \in U \mid x \notin A\}$

Example. Let $U = \mathbf{R}$, $A = [5, \infty)$, $B = (-\infty, 7)$, C = [4, 6]. Find the following sets.

$$A \cap B = A \cap C = A \cup B = C - A =$$

$$B-C=$$
 $C-B=$ $A-B=$ $A^{c}=$

 $B - A = B \cup C = B \cap C = B \cap A^c =$

Definition. The cardinality |A| of a finite set A is the number of elements in A.

Example. $|\{1,3,7,8\}| = |\{\sqrt{8},4,13,2\sqrt{2}\}| =$

Definition. The power set of A, denoted $\mathcal{P}(A)$, is the set of all subsets of A.

$$\mathcal{P}(A) = \{ X \subseteq U \mid X \subseteq A \}$$

Note: We always have $\emptyset \subseteq A$ and $A \subseteq A$. Therefore, $\emptyset \in \mathcal{P}(A)$ and $A \in \mathcal{P}(A)$.

Example. Let $A = \{a, b, c\}$. $|A| = \mathcal{P}(A) =$

Note: In general, it is true that $|\mathcal{P}(A)| = 2^{|A|}$.

Note: For an element $a \in A$, $\{a\}$ and a are not the same thing.

Mathematical Reasoning — Lecture notes MAT 312, Spring 2023 — D. Ivanšić $\frac{5.2 \text{ Proving}}{\text{Set Relationships}}$

We demonstrate how to prove claims about sets.

Proposition. Let $A, B \subseteq U$. Then $A - B = A \cap B^c$.

Proof.

Note that we can often just retrace our steps for the opposite inclusion.

Proposition. Let $A, B, C \subseteq U$. If $C \subseteq A - B$, then $B \cap C = \emptyset$. *Proof.*

Definition. Sets A and B are *disjoint* if $A \cap B = \emptyset$.

Proposition. Let $A, B, C \subseteq U$. If $A \cup C = B \cup C$ and $A \cap C = B \cap C$, then A = B.

Proof.

Mathematical Reasoning — Lecture Notes MAT 312, Spring 2023 — D. Ivanšić

$\frac{5.3 \text{ Properties of}}{\text{Set Operations}}$

Theorem. Let A, B and C be subsets of some universal set U. Then the following equalities or statements hold.

Empty set	$A \cap \emptyset = \emptyset$	$A \cup \emptyset = A$	
Universal set	$A\cap U=A$	$A \cup U = U$	
Idempotent Laws	$A \cap A = A$	$A \cup A = A$	
Commutative Laws	$A\cap B=B\cap A$	$A \cup B = B \cup A$	
Associative Laws	$(A \cap B) \cap C = A$ $(A \cup B) \cup C = A$	$ \cap (B \cap C) \\ \cup (B \cup C) $	
Distributive Laws	$A \cap (B \cup C) = (A \cup A) \cup (B \cap C) = (A \cup A) \cup $	$A \cap B) \cup (A \cap C) A \cup B) \cap (A \cup C)$	
Basic Complement Laws	$(A^c)^c = A$	$A - B = A \cap B^c$	
Empty Set Complements	$\emptyset^c = U$	$A - \emptyset = A$	
Universal Set Complements	$U^c = \emptyset$	$A - U = \emptyset$	
De Morgan's Laws	$\begin{array}{l} (A\cap B)^c = A^c \cup \\ (A\cup B)^c = A^c \cap \end{array}$	B^c B^c	
General Subset Laws	$A \cap B \subseteq A$ If $A \subseteq B$, then A	$A \subseteq A \cup B$ $A \cap C \subseteq B \cap C \text{ and } A \cup C \subseteq B \cup C$	
Subsets and Complements	$A \subseteq B$ if and only if $B^c \subseteq A^c$		

Example. Prove the distributive law $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Example. Prove: if $A \subseteq B$, then $A \cap C \subseteq B \cap C$.

Example. Prove De Morgan's law $(A \cup B)^c = A^c \cap B^c$.

Note. Proofs of set equalities heavily depend on logical equivalences we have proved before. For example, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ uses the logical equivalence $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$. De Morgan's laws for sets use De Morgan's logical equivalences.

Example. Use algebra of sets to show that $A - (A - B) = A \cap B$.

Example. Use algebra of sets to show that $(A - B) \cap (B - A) = \emptyset$.