Mathematical Reasoning - Lecture notes MAT 312, Spring 2023 - D. Ivanšić

5.1 Operations on Sets

We work in a universal set U.
Recall: $x \in A: x$ is an element of A
$x \notin A: x$ is not an element of A
\emptyset denotes a set with no elements, the empty set or null set

Definition. Let A and B be sets with elements from a universal set U. We define:

1) A is a subset of $B, A \subseteq B$, if for all $x \in U$, if $x \in A$, then $x \in B$.
2) A is equal to $B, A=B$, if for all $x \in U, x \in A$ if and only if $x \in B$.

We write $A \nsubseteq B, A \neq B$ for negations of those statements. We also write $A \subset B$, and say A is a proper subset of B, if $A \subseteq B$ and $A \neq B$.

Note. $A=B$ is equivalent to $A \subseteq B$ and $B \subseteq A$.

Example. Let
$U=\mathbf{N}, \quad A=\{1,3,5,7\}, \quad B=\{n \in \mathbf{N} \mid n$ is odd and $n<9\}, \quad C=\{n \in \mathbf{N} \mid n$ is odd $\}$. State the relationships among these sets.

Example. Let $U=\mathbf{Z}, A=\{n \in \mathbf{Z}|2| n\}, B=\{n \in \mathbf{Z}|4| n\}$.
Show that $B \subset A$ and $A \nsubseteq B$.

Note. The negation of $(\forall x \in U)(x \in A \Longrightarrow x \in B)$ is $(\exists x \in U)(x \in A$ and $x \notin B)$.

We often use Venn diagrams to picture relationships between sets.
$A \subseteq B$

Definition. We define the following operations on sets. Let $A, B \subseteq U$.
Intersection of A and B
$A \cap B=\{x \in U \mid x \in A$ and $x \in B\}$
Union of A and B
$A \cup B=\{x \in U \mid x \in A$ or $x \in B\}$

Set difference of A and B
Complement of A
$A-B=\{x \in U \mid x \in A$ and $x \notin B\}$
$A^{c}=\{x \in U \mid x \notin A\}$

Example. Let $U=\mathbf{R}, \quad A=[5, \infty), \quad B=(-\infty, 7), \quad C=[4,6]$. Find the following sets.

$A \cap B=$	$A \cap C=$	$C-A=$
$B-C=$	$C-B=$	$A-B=$
$B-A=$	$B \cup C=$	$B \cap C=$

Definition. The cardinality $|A|$ of a finite set A is the number of elements in A.

Example. $|\{1,3,7,8\}|=$

$$
|\{\sqrt{8}, 4,13,2 \sqrt{2}\}|=
$$

Definition. The power set of A, denoted $\mathcal{P}(A)$, is the set of all subsets of A.

$$
\mathcal{P}(A)=\{X \subseteq U \mid X \subseteq A\}
$$

Note: We always have $\emptyset \subseteq A$ and $A \subseteq A$. Therefore, $\emptyset \in \mathcal{P}(A)$ and $A \in \mathcal{P}(A)$.

Example. Let $A=\{a, b, c\}$.
$|A|=\quad \mathcal{P}(A)=$

Note: In general, it is true that $|\mathcal{P}(A)|=2^{|A|}$.
Note: For an element $a \in A,\{a\}$ and a are not the same thing.

> Mathematical Reasoning - Lecture notes
> MAT 312, Spring 2023 - D. Ivanšić

5.2 Proving

 Set RelationshipsWe demonstrate how to prove claims about sets.
Proposition. Let $A, B \subseteq U$. Then $A-B=A \cap B^{c}$.
Proof.

Note that we can often just retrace our steps for the opposite inclusion.

Proposition. Let $A, B, C \subseteq U$. If $C \subseteq A-B$, then $B \cap C=\emptyset$.
Proof.

Definition. Sets A and B are disjoint if $A \cap B=\emptyset$.

Proposition. Let $A, B, C \subseteq U$. If $A \cup C=B \cup C$ and $A \cap C=B \cap C$, then $A=B$. Proof.

Mathematical Reasoning - Lecture Notes
 MAT 312, Spring 2023 - D. Ivanšić

5.3 Properties of Set Operations

Theorem. Let A, B and C be subsets of some universal set U. Then the following equalities or statements hold.

Empty set	$A \cap \emptyset=\emptyset$	$A \cup \emptyset=A$
Universal set	$A \cap U=A \quad A \cup U=U$	
Idempotent Laws	$A \cap A=A \quad A \cup A=A$	
Commutative Laws	$A \cap B=B \cap A$	$A \cup B=B \cup A$
Associative Laws	$(A \cap B) \cap C=A \cap(B \cap C)$	
	$(A \cup B) \cup C=A \cup(B \cup C)$	
Distributive Laws	$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	
	$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	
Basic Complement Laws	$\left(A^{c}\right)^{c}=A$	$A-B=A \cap B^{c}$
Empty Set Complements	$\emptyset^{c}=U$	$A-\emptyset=A$
Universal Set Complements	$U^{c}=\emptyset$	$A-U=\emptyset$
De Morgan's Laws	$(A \cap B)^{c}=A^{c} \cup B^{c}$	
	$(A \cup B)^{c}=A^{c} \cap B^{c}$	
General Subset Laws	$A \cap B \subseteq A$	$A \subseteq A \cup B$
Subsets and Complements	$A \subseteq B$ if and only if $B^{c} \subseteq A^{c}$	

Example. Prove the distributive law $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

Example. Prove: if $A \subseteq B$, then $A \cap C \subseteq B \cap C$.

Example. Prove De Morgan's law $(A \cup B)^{c}=A^{c} \cap B^{c}$.

Note. Proofs of set equalities heavily depend on logical equivalences we have proved before. For example, $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ uses the logical equivalence $P \wedge(Q \vee R) \equiv$ $(P \wedge Q) \vee(P \wedge R)$. De Morgan's laws for sets use De Morgan's logical equivalences.

Example. Use algebra of sets to show that $A-(A-B)=A \cap B$.

Example. Use algebra of sets to show that $(A-B) \cap(B-A)=\emptyset$.

