Mathematical Reasoning — Lecture notes MAT 312, Spring 2023 — D. Ivanšić

2.1, 2.2 Logical Operators, Equivalent Statements

If we have two or more statements, we can build more complex statements using the statements and a **logical operator** (or **connective**). The common logical operators are *not*, *and*, *or*, *if*-*then*.

Operator	In words	In symbols
Negation	not P	$\neg P$
Conjunction	P and Q	$P \wedge Q$
Disjunction	P or Q	$P \lor Q$
Implication	If P , then Q	$P \Longrightarrow Q$

Let P and Q be the statements:

P: The house has a 3-car garage.Q: The house has 4 bathrooms.

With these statements in mind as examples, fill out the truth tables below:

		P	Q	P and Q		P	Q	P or Q
P	not P	Т	Т			Т	Т	
Т		Т	F		_ 1	Т	F	
F		F	Т			F	Т	
		F	F			F	F	

Definition. Two expressions X and Y are called **logically equivalent** if they have the same truth value for all possible combinations of truth values of variables appearing in the two expressions. In this case, we write $X \equiv Y$ and say "X is equivalent to Y."

Example. Consider the "house" statements from above to convince yourself of de Morgan's laws:

$$\neg (P \land Q) \equiv \neg P \lor \neg Q$$
$$\neg (P \lor Q) \equiv \neg P \land \neg Q$$

Now use truth tables to establish the same:

P	Q	$\neg P$	$ \neg Q$	$P \wedge Q$	$\neg (P \land Q)$	$\neg P \vee \neg Q$	$P \lor Q$	$\neg (P \lor Q)$	$\neg P \land \neg Q$
Т	Т								
Т	F								
F	Т								
F	F								

Example. Use truth tables to establish one distributive law: $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$. The other is $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$.

P	Q	R	$Q \vee R$	$P \land (Q \lor R)$	$P \wedge Q$	$P \wedge R$	$(P \land Q) \lor (P \land R)$
Т	Т	Т					
Т	Т	F					
Т	F	Т					
Т	F	F					
F	Т	Т					
F	Т	F					
F	F	Т					
F	F	F					

Example. Let P and Q be the statements:

P: It is raining.

Q: There are clouds in the sky.

Form the statements below. Which of them mean the same thing as $P \Longrightarrow Q$?

 $P \Longrightarrow Q$ $Q \Longrightarrow P$ $\neg Q \Longrightarrow \neg P$ $\neg P \Longrightarrow \neg Q$ $\neg P \land Q$ $\neg P \lor Q$ $P \land \neg Q$ $\neg (P \land \neg Q)$

Recall the truth table for $P \Longrightarrow Q$ to fill out the following truth tables. Compare the statements $P \Longrightarrow Q$, $Q \Longrightarrow P, \ldots, \neg (P \land \neg Q)$. Which have the same truth values when given the same input for P and Q? Does it agree with your answers above?

P	Q	$\neg P$	$\neg Q$	$P \Longrightarrow Q$	$Q \Longrightarrow P$	$\neg Q \Longrightarrow \neg P$	$\neg P \Longrightarrow \neg Q$	$\neg P \lor Q$	$P \wedge \neg Q$	$\neg (P \land \neg Q)$
Т	Т									
Т	F									
F	Т									
F	F									

More on the conditional statement: if P, then Q.

Other ways to say it:

As an equivalent statement: $P \Longrightarrow Q \equiv \neg Q \Longrightarrow \neg P \equiv \neg P \lor Q \equiv \neg (P \land \neg Q)$

Q if PGraphically:P implies Q

Whenever ${\cal P}$ is true, ${\cal Q}$ is true

- Q is true whenever P is true
- Q is necessary for P

 ${\cal P}$ is sufficient for ${\cal Q}$

P only if Q

The biconditional statement $P \iff Q$

The statement $P \iff Q$ is read as "P if and only if Q," so

it consists of two statements connected by "and" $\begin{cases} P \text{ if } Q \ (Q \Longrightarrow P) \\ P \text{ only if } Q \ (P \Longrightarrow Q) \end{cases}$

Therefore, we can write $P \iff Q \equiv (P \Longrightarrow Q) \land (Q \Longrightarrow P)$

Truth table:

P	Q	$P \Longrightarrow Q$	$Q \Longrightarrow P$	$(P \Longrightarrow Q) \land (Q \Longrightarrow P)$
Т	Т			
Т	F			
F	Т			
F	F			

Note: $P \iff Q$ means P and Q are either both true or both false.

Example: The light is on \iff the switch on the light is on (assuming normal circumstances)

Example: A number is divisible by $4 \iff$ the last two digits of the number is a number divisible by 4

2.3 Open Sentences and Sets

Definition. A set is a collection of objects.

Examples.

 $A = \text{set of integers divisible by } 3 = \{\dots, -6, -3, 0, 3, 6, \dots\}$ $B = \text{set of real solutions to equation } x^2 = 7 = \{x \in \mathbf{R} \mid x^2 = 7\} = \{ \}$ $C = \text{set of all real numbers } x \text{ for which } x^2 - 3x - 10 \le 0 = \{x \in \mathbf{R} \mid x^2 - 3x - 10 \le 0\} =$ $D = \text{set of all integers } x \text{ for which } x^2 - 3x - 10 \le 0 = \{x \in \mathbf{Z} \mid x^2 - 3x - 10 \le 0\} =$

Notice the ways of writing sets:

enumerating all elements, or enumerating enough elements so pattern is clear (roster method)

set builder notation: $\{x \in U \mid P(x)\}$, where P(x) is some sentence in x, U is a universal set (set that makes sense in the context)

Notation: $y \in A$: y is an element of A $y \notin A$: y is not an element of A \emptyset denotes a set with no elements, the *empty set* or *null set*

Example. Write whether the following are or are not elements of sets A, B, C, D above:

4	A	-18	A	0 .	В	$\sqrt{7}$	В		
1.17	C	6	C	1.17	D	1	D	-3	D

Definition. Two sets A and B are equal if they have precisely the same elements.

A set A is a subset of a set B ($A \subseteq B$) if every element of A is an element of B. We say A is contained in B. We can also say B contains A: $B \supseteq A$.

Example. Write the correct relationship between sets $(=, \neq, \subseteq, \supseteq)$

 $[-2,5] \quad \{-2,-1,0,1,2,3,4,5\} \qquad \qquad \{1,3,5,5\} \qquad \{1,3,5\} \qquad \qquad \emptyset \qquad \mathbf{N}$

 $\{1, 3, 5, 7, 9, 11, \dots\}$ $\{x \in \mathbb{N} \mid x = 2k + 1 \text{ for some } k \in \mathbb{N}\}$

 $\{x \in \mathbf{N} \mid x = 4k \text{ for some } k \in \mathbf{N}\}$ $\{x \in \mathbf{N} \mid \text{the last two digits of } x \text{ form a number divisible by } 4\}$

Example. Sentences such as

 $x^2 - 7 = 0$ or $x^2 - 3x - 10 \le 0$ or $\sqrt[4]{x}$ is a real number

are not statements — since we don't know what x is, we cannot determine their truth value.

Such statements are called *open sentences*. The above have form P(x), that is, they have one variable, but they may have more.

Example. 3x - y = z has form P(x, y, z) — it has three variables.

Putting in specific values for the variables makes the open sentences true or false, so they become statements.

Definition. An open sentence (or predicate or propositional function) is a sentence $P(x_1, x_2, \ldots, x_n)$ involving variables x_1, x_2, \ldots, x_n with the property that when specific values from the universal set are assigned to x_1, x_2, \ldots, x_n , the resulting sentence is either true or false, so is a statement.

Example. Let $U = \{A | ice, Bernie, Charlene\}$. Consider these predicates.

3x + 1 = 7x - 5

x works at a pizzeria

Example. Let $U = \mathbf{R}$. Which x makes the sentence true?

3x + 1 = 7x - 5

Definition. The truth set of an open sentence with one variable is the collection of all objects in the universal set that, when substituted for the variable, make the open sentence a true statement.

Example. Consider the open sentences and universal sets below. What is the truth set of each open sentence?

 $3x + 1 = 7x - 5 \qquad \qquad U = \mathbf{R} \qquad \qquad U = \mathbf{Q} \qquad \qquad U = \mathbf{Z}$

 $\sqrt[4]{x}$ is a number in the universal set $U = \mathbf{R}$ $U = \mathbf{Q}$ $U = \mathbf{Z}$

$$x^2 - 3x - 10 \le 0 \qquad \qquad U = \mathbf{R} \qquad \qquad U = \mathbf{Q} \qquad \qquad U = \mathbf{Z}$$

Note. The truth set of P(x) is $\{x \in U \mid P(x)\}$.

Mathematical Reasoning — Lecture notes MAT 312, Spring 2023 — D. Ivanšić 2.4 Quantifiers and Negations

Example. Consider the sentences. Are they statements?

For every $x \in \mathbf{R}$, $x^2 + 5x + 10 \ge 0$.

There exists an $x \in \mathbf{R}$, such that $x^2 + 5x + 10 \ge 0$

For every $x \in \mathbf{R}$, $x^3 + 3x^2 + 1 \ge 0$.

There exists an $x \in \mathbf{R}$, such that $x^3 + 3x^2 + 1 \ge 0$.

The statements are formed by using open sentences in a variable and phrases

"for every x in a universal set" (universal quantifier) "there exists an x in a universal set (existential quantifier)

The quantifiers turn an open sentence into a statement.

Notation: $(\forall x) P(x)$: for every x, P(x) $(\exists x) P(x)$: there exists an x such that P(x).

Note: $(\forall x) P(x) \equiv$ the truth set of P(x) is the universal set $(\exists x) P(x) \equiv$ the truth set of P(x) is not empty

Example. Negate the statements.

Every Batman has a mask.

There is a rotten apple in the barrel.

For every $x \in \mathbf{R}$, $3^x > 2^x$.

There exists an $x \in \mathbf{R}$ such that $x^2 + 4 = 2x$.

The previous examples should give you an intuitive understanding of this negation principle.

Theorem. For an open sentence P(x)

$$\neg(\forall x) P(x) \equiv (\exists x) \neg P(x) \neg(\exists x) P(x) \equiv (\forall x) \neg P(x)$$

Proof.

Example. Definitions involve quantifiers, so we now know how to negate them. Negate the following definitions.

An integer x is even if there exists an integer k such that x = 2k.

A real number x is rational if there exist integers a, b such that $x = \frac{a}{b}$.

Example. Working with multiple quantifiers.

 $(\exists y \in \mathbf{R})(x^2 + y^2 = 25) \\ (\forall y \in \mathbf{R})(x^2 + y^2 = 25)$ are not statements (what is x?) but open sentences in $x \begin{cases} P(x) \\ Q(x) \end{cases}$

Check whether they are true or false for x = 3 and x = 7.

Determine the truth sets of the open sentences P(x) and Q(x).

 $(\exists y \in \mathbf{R})(x^2 + y^2 = 25)$

 $(\forall y \in \mathbf{R})(x^2 + y^2 = 25)$

We can form statements using quantifiers and P(x) and Q(x).

$$\begin{array}{l} (\forall x \in \mathbf{R}) \ P(x) \equiv (\forall x \in \mathbf{R}) (\exists y \in \mathbf{R}) (x^2 + y^2 = 25) \\ (\exists x \in \mathbf{R}) \ P(x) \equiv (\exists x \in \mathbf{R}) (\exists y \in \mathbf{R}) (x^2 + y^2 = 25) \\ (\forall x \in \mathbf{R}) \ Q(x) \equiv (\forall x \in \mathbf{R}) (\forall y \in \mathbf{R}) (x^2 + y^2 = 25) \\ (\exists x \in \mathbf{R}) \ Q(x) \equiv (\exists x \in \mathbf{R}) (\forall y \in \mathbf{R}) (x^2 + y^2 = 25) \end{array}$$

For the first and third statements, write the statement in words and negate it using quantifiers. Write the negated statements in words.