College Algebra — Joysheet 9 MAT 140, Spring 2023 — D. Ivanšić

Name: Saul Ocean Covers: 3.3, 3.4, 3.5 Show all your work!

(4pts) Solve the equation.

$$|2x+3| = 1$$
 $2x+3=1$ $2x+3=-1$ $2x=-2$ $2x=-4$ $x=-2$

(12pts) Solve the inequalities. Draw your solution and write it in interval form.

$$|x+3| < 4$$
 $|2x-1| > 5$ $|x-(-3)| < 4$ $|x-(-3)|$

Solve the equations:

3.
$$(8pts) \frac{x-7}{x+2} + \frac{x+5}{x-2} = \frac{x^2-8x+40}{x^2-4} \left[(x-1)(x+1) 4. (8pts) 2x-2 = x+\sqrt{39-2x} \right] - x$$

$$\frac{(x-2)(x+1)}{(x-2)(x+1)} \left(\frac{x+5}{x-2} (x-1)(x+1) + \frac{x+5}$$

X-2 = \ 39-2x x2-2-x-2+2= \39-7x x2-4x+4=39-2x 1+2x-39 x2-2x-35=0 (x-7)(x+5)=0 x=7 is only solution Check. 2-7-2=7+ V39-14 12: 7+ V25 yes 2.(-5)-2=-5+ \(\frac{39-2(-5)}{29-2(-5)}\) -12 = -5 + Jag no

- 5. (14pts) An arrow is launched from height 10 meters upwards with initial velocity 40 meters per second. Its height in meters after t seconds is given by $s(t) = -5t^2 + 40t + 10$.
- a) Sketch the graph of the height function.
- b) When does the arrow reach its greatest height, and what is that height?
- c) When is the arrow at height 56.2 meters?

c)
$$-5t^{2}+40t+10=56.2$$

 $-5t^{2}+40t-46.2=0$
 $5t^{2}-40t+46.2=0$ | is
 $t^{2}-8t+9.24=0$
 $t=\frac{-(8)\pm\sqrt{(-8)^{2}-4.1.9.24}}{2}=\frac{8\pm\sqrt{27.04}}{2}$
 $=\frac{8\pm5.2}{2}=\frac{13.2}{2},\frac{2.8}{2}=6.6,1.4$
Height 56.2 weters reached at times
 $t=6.4s$ (an way up) and $t=6.6s$ (our way)

- (14pts) A highway maintenance department is planning a building with two stalls intended to house its equipment. The stalls are connected by a 20ft wide door. The maintenance department has budgeted for total wall length 400 feet and its goal is to maximize the enclosed area.
- a) Express the area of the building (the entire rectangle) as a function of one of the sides of the rectangle. What is the domain of this function?
- c) Sketch the graph of the area function in order to find the maximum (no need for the graphing calculator — you should already know what the graph looks like). What are the dimensions of the building that has the greatest area and what is the greatest area possible?

a) A= x.y = (420-28)y= -25 +420y = A/5) x-20+2y=400 X+2y=420 x= 420-29

k=-2.1052+420.105=22,050

Must have: 420 X7,20 420-24 7,20 -25 3 - 400 9 € 200

Max area: 22,050

Dimensions: x= 420-2,105=210

Dorner [0, 200]