College Algebra — Joysheet 2 MAT 140, Spring 2023 — D. Ivanšić

Name: Saul Ocean

Covers: 1.1, 1.2

- 1. (11pts) Draw the triangle with vertices A = (-4, 1), B = (-2, 5) and C = (0, -1) in the coordinate plane.
- a) Does it look like the triangle is isosceles (has two sides of equal length)?
- b) By computing lengths of all sides, find out algebraically whether ABC is isosceles.

$$d(A_1B) = \sqrt{(5-1)^2 + (-2-(-4))^2} = \sqrt{4^2 + 2^2} = \sqrt{20}$$

$$d(B_1C) = \sqrt{(0-(-2))^2 + (-1-5)^2} = \sqrt{20}i(-6)^2 = \sqrt{4+36} = \sqrt{40}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20}$$

$$d(A_1C) = \sqrt{(0-(-4))^2 + (-1-1)^2} = \sqrt{(0-(-4))^2} =$$

2. (10pts) Find the equation of the circle, if (-1, -2) and (1, 4) are at the ends of a diameter. Draw the circle.

Center is unidepoint ef
$$(x-0)$$

 $(-1,-2)$ and $(1,4)$ x^2
 $C = (-1+1)$ $-2+4$ -2

(8pts) Use the graph of the function f at right to answer the following questions.

a) Find f(-6) and f(1). f(-6)=1, f(1)=-2

- b) Find all the x- and y-intercepts (accuracy: 6 decimal points).
- c) State the domain and range.

5. (9pts) Find the domain of each function and write it using interval notation.

a)

$$f(x) = \frac{x-3}{2x+6}$$

$$(au! + have: 2x+6=0)$$

$$2x=-6$$

$$x=-3$$

$$g(x) = \frac{5 + \sqrt{x}}{x - 2}$$
Must have x>0 Coult have x-2 = 0

(4,21)

X

mun Journa

6. (10pts) Let $h(x) = 3x^2 - 5x + 7$. Find the following (simplify where appropriate).

$$h(1) = 3.1^2 - 5.1 + 1 = 5$$

$$h(-3) = 3 \cdot (-1)^{2} - 5(-1) - 7$$

$$= 27 + 15 + 7 = 49$$

$$h(2\sqrt{u}) = 3(2\sqrt{u})^2 - 5.2\sqrt{u} + 7$$

$$= 3.4u - 10\sqrt{u} + 7$$

$$= 12u - 10\sqrt{u} + 7$$

$$h(x-3) = 3(x-3)^{2} - 5(x-3) + 1$$

$$= 3(x^{2} - 6x + 9) - 5x + 15 + 7$$

$$= 3x^{2} - 18x + 27 - 5x + 22$$

$$= 3x^{2} - 23x + 49$$