College Algebra - Exam 4 MAT 140C, Fall 2021 - D. Ivanšić

Show all your work!

1. (8pts) Evaluate without using the calculator. For each problem, write the question you should ask yourself in order to find the logarithms.
$\log _{2} 32=$
$\log _{3} \frac{1}{27}=$
$\log _{a} \sqrt[5]{a^{2}}=$
$\log _{a^{2}} a^{6}=$
2. (4pts) Use the change-of-base formula and your calculator to find $\log _{7} 9$ with accuracy 6 decimal places. Show how you obtained your number.
3. (5pts) If $\log _{a} 2=u$ and $\log _{a} 3=v$, express in terms of u and v :
$\log _{a} 6=\quad \quad \log _{a} \frac{2}{\sqrt{3}}=$
4. (4pts) Simplify.
$\log _{6} 6^{4 x-3}=$

$$
e^{\ln 3.1}=
$$

5. (8pts) Convert equation into other form, logarithmic or exponential.

$$
\begin{array}{ll}
b=12^{3} & \log _{x} 8=4 \\
e^{6}=m & \log _{6} d=\frac{1}{3}
\end{array}
$$

6. (3pts) Find the domain of the function $f(x)=\ln (8-3 x)$ and write it in interval notation.
7. (6pts) The graph of a function f is given.
a) Is this function one-to-one? Justify.
b) If the function is one-to-one, find the graph of f^{-1}, labeling the relevant points, and showing any asymptotes.

8. (9pts) Let $f(x)=\frac{x+2}{x}$.
a) Find the formula for $\stackrel{x}{f}{ }^{-1}$.
b) Find the range of f.
9. (6pts) Using transformations, draw the graph of $f(x)=e^{-x}-2$. Explain how you transform the graph of a basic function in order to get the graph of f. Indicate at least one point on the graph and any asymptotes.
10. (9pts) How much needs to be deposited in an account bearing 8.4% interest, compounded monthly, so that there is $\$ 7,000$ in the account after 5 years?
11. (12pts) Write as a sum and/or difference of logarithms. Express powers as factors. Simplify if possible.
$\log _{6}\left(36 x^{4} y^{7}\right)=$
$\log \frac{x^{3} \sqrt{y}}{1000 x^{7} y^{3}}=$
12. (12pts) Write as a single logarithm. Simplify if possible.
$2 \log _{7}\left(x^{3} y^{2}\right)+4 \log _{7}\left(x^{-4} y^{3}\right)=$
$6 \ln x-2 \ln \left(x^{2}+3 x\right)+4 \ln (x+3)=$
13. (14pts) The population of Bloomville was 432,000 in 2015 and 610,000 in 2020. Assume that it has grown according to the formula $P(t)=P_{0} e^{k t}$.
a) Find k and write the function that describes the population at time t years since 2015 . Graph it on paper.
b) How long will it take until population is 800,000 ?

Bonus (10pts) Let $f(x)=\frac{e^{x}-3}{e^{x}+2}$. Find the formula for f^{-1}. Hint: solve for e^{x} first.

