
Advanced Calculus 1 — Exam 1
MAT 525/625, Fall 2023 — D. Ivanšić

Name:
Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type B or C
(two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define the infimum of a nonempty subset S of R.

Theory 2. (3pts) State the order properties of R.

Theory 3. (3pts) State the lemma that characterizes when a number u is the supremum of
a set S, but does not use ε.

Type A problems (5pts each)

A1. Show using Mathematical Induction that 1 + x+ · · ·+ xn =
xn+1 − 1

x− 1
for any x ∈ R,

x 6= 1.

A2. Let A and B be sets, where A is denumerable and B is finite. Show that A \ B is
denumerable.

A3. If a, b ∈ R, use only the axiomatic algebraic properties of R to show that 1
1
a

= a and
1
ab

= 1
a
· 1
b
.

A4. Let S be nonempty and bounded. Show that 1) inf S ≤ supS, and 2) if inf S = supS,
then S has only one element.

A5. Show using the triangle inequality: for all x, y ∈ R, ||x| − |y|| ≤ |x− y|.

A6. For these subsets of R, if they exist, find a lower bound of S, an upper bound of S,
inf S and supS. There is no need to justify.
a) S = {x ∈ Q |

√
2 < x <

√
3} b) S =

{
1
n
+ 1

n2 | n ∈ N
}

Type B problems (8pts each)

B1. Show that the set { 1
n
− 1

m
| m,n ∈ N} is denumerable.

B2. If a, b ∈ R, use only the axiomatic algebraic properties of R to show that
(−a)(−b) = ab, without proving (−1)a = −a first.

B3. Show by induction on n: every number of form 22n−1m, where m,n ∈ N and m is
odd has an irrational square root. (Note the predicate P (n) is: for every odd m ∈ N, the
number 22n−1m has an irrational square root. Basis is more involved, step is easy.)

B4. Determine and sketch the set of points in the plane satisfying 2|x| − |y| ≥ 4.



B5. Consider the subset S of R, S =

{
n · 1 + (−1)n

2
+

1

n
| n ∈ N

}
. If they exist, find

a lower bound of S, an upper bound of S, inf S and supS. Prove the details, including
nonexistence of any of the quantities.

B6. Let S ⊂ [0,∞) be a nonempty set. Show that inf S2 = (inf S)2. (As expected,
S2 = {s2 | s ∈ S}.)

B7. Let a, b ∈ R, a < b. Show that the interval (a, b) contains a rational number of the

form
m

2n
, for some m ∈ Z and n ∈ N.

Type C problems (12pts each)

C1. Let α ∈ R be such that α3 is rational, but α and α2 are not. Show: if s, t, u ∈ Q are
such that s+ tα+ uα2 = 0, then s = t = u = 0. Hint: multiply by a number of form x+ yα,
x, y ∈ Q, and choose x and y wisely.

C2. Let C = {A ⊆ Q | A ⊆ (0, 1)}. Show that this collection of subsets of Q is uncountable.
Hint: start by showing the map C → R, A 7→ supA is surjective.



Advanced Calculus 1 — Exam 2
MAT 525/625, Fall 2023 — D. Ivanšić

Name:
Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type B or C
(two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define when a sequence tends to −∞.

Theory 2. (3pts) Define a Cauchy sequence.

Theory 3. (3pts) State the Bolzano-Weierstrass Theorem.

Type A problems (5pts each)

A1. Use the definition of the limit to show lim n−1
n2+2n

= 0.

A2. Find lim
(
1 + 1

2n

)n−1
.

A3. Use the “ratio test” or other method to find the limit of the sequence n3n

(3n)!
.

A4. Determine if the sequence
(
sin (2n+1)π

4

)
converges. Justify your answer with known

theorems.

A5. Show: if lim xn = x and x < 0, then there is a K ∈ N such that xn < 0 for all n ≥ K.

A6. Prove the extended limit law L · ∞ = ∞ for L > 0. That is, use the definition to
show: if lim xn = L ∈ R, L > 0 and lim yn = ∞, then lim(xnyn) = ∞.

Type B problems (8pts each)

B1. Find lim n

√
(1 + 1

n
)n + 2n.

B2. Let the sequence xn be recursively given by: x1 = 6, xn+1 =
√
5 + 2xn. Show that

this sequence converges and find its limit.

B3. Let xn = 1 + b + b2 + · · · + bn, |b| < 1. Show that xn is a contractive sequence and
find lim xn. Note that the obvious recursive relation xn+1 = xn + bn+1 does not help. For
example, use bxn = . . . .

B4. Let xn = 1
12

+ 1
22

+ · · · + 1
n2 . Show directly that (xn) is a Cauchy sequence. The

inequality 1
k2

≤ 1
k(k−1)

= 1
k−1

− 1
k
will be helpful.

B5. Prove the other version of the “ratio test:” for a sequence of positive numbers (xn), if
lim xn+1

xn
= L and L ∈ R and L > 1, then lim xn = ∞.

B6. Let (xn) be a bounded sequence and w = inf{xn | n ∈ N}. Suppose that for every
v > w, xn < v for infinitely many indices n. (Put another way: for every v > w, the set
{n ∈ N | xn < v} is infinite.) Show there exists a subsequence (xnk

) such that lim xnk
= w.



Type C problems (12pts each)

C1. Let the sequence xn be recursively given by: x1 > 0, xn+1 =
1
2

(
xn +

7
xn

)
.

a) Show for any a > 0: 1
2

(
a+ 7

a

)
≥

√
7.

b) Show that xn is a decreasing sequence for n ≥ 2 (part a) will help) and show it is bounded
below.
c) Find lim xn.

C2. Let xn = n
√
n!.

a) Show (xn) is increasing.
b) Show n! ≥ k!kn−k for every k = 1, 2, . . . , n.
c) Fixing a k, use b) to get an inequality that will give you the limit of (xn).



Advanced Calculus 1 — Exam 3
MAT 525/625, Fall 2023 — D. Ivanšić

Name:
Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type B or C
(two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Let f : A → R and let c be a cluster point of A. Define what lim
x→c

f(x) = L
means.

Theory 2. (3pts) State the limit law for products.

Theory 3. (3pts) State the Squeeze Theorem for limits.

Type A problems (8pts each)

A1. Find the limits, if they exist
(just a computation is expected):

a) lim
x→c

1
x
− 1

c

x− c
b) lim

x→1

x2 + x− 2

x−
√
x

.

A2. Does lim
x→0

x2

(
3 + sin

1

x

)
exist? If yes, find it, if not, justify.

A3. Show that lim
x→0

1

x
cos

1

x
does not exist.

A4. Let f : R → R and let lim
x→c

f(x) = L > 0. Show that there is a δ-neighborhood of c so

that f(x) > 0 for all x ∈ Vδ(c), x 6= c. Is f(c) > 0 also true?

A5. Use the definition to show that if lim
x→0

f(x) = L, then lim
x→c

f(x− c) = L. (This justifies

the following “substitution” when finding limits: lim
x→c

f(x) = [u = x− c] = lim
u→0

f(u+ c).)

Type B problems (8pts each)

B1. Use the definition to show that lim
x→c

x4 = c4.

B2. Use the definition to show that lim
x→ 1

4

1

x
= 4.

B3. Suppose that lim
x→c

(f(x)− g(x)) = L and lim
x→c

(f(x)2 + g(x)2) = M for some L,M ∈ R.

Show that lim
x→c

f(x)g(x) exists and express it using L and M .

B4. Find all the cluster points (in R) of the set { 1
n
| n ∈ N}. (There aren’t many!) You

do not need to write a detailed proof, but justify your answer with a picture and some good
words. Justify also why certain points are not cluster points of the set.

B5. Suppose f, g : R → R, and lim
x→c

g(x) = M , lim
x→M

f(x) = L and there is a δ so that

g(x) 6= M for all x ∈ Vδ(c). Show that lim
x→c

f(g(x)) = L.



B6. Let f : R → R be given by f(x) =

{
2x+ 3, if x ∈ Q
5− x, if x /∈ Q

Find all the numbers c for which lim
x→c

f(x) exists, and prove the limit exists. Justify why

lim
x→c

f(x) does not exist for the other numbers.

Type C problems (12pts each)

C1. Recall that we proved that the sequence en =
(
1 + 1

n

)n
was increasing and bounded.

Using the same computation with slight modifications, we can prove that for every x ≥ 1,
the sequence

(
1 + x

n

)n
is increasing and bounded and hence converges to some number f(x).

Assuming this fact, do the following problems.

a) For 0 < x < 1, show that
(
1 + x

n

)n
converges as follows: Let M ∈ N be such that Mx ≥ 1,

then
(
1 + Mx

n

)n
converges by the above. Then

(
1 + x

n

)n
=

(
1 + Mx

Mn

)...
. Continue with the

algebra to show this sequence converges, expanding the definition of f(x) to [0, 1).

b) Now let x < 0, x = −w. Show that
(
1 + x

n

)n
converges by rewriting:(

1 +
x

n

)n

=
(
1− w

n

)n

=
1(

1 + w
n−w

)n
Now let M ∈ N be such that M − 1 ≤ w < M . Show that

1

1 + w
n−(M−1)

≥ 1

1 + w
n−w

>
1

1 + w
n−M

and use the squeeze theorem and the results from above to show that
1(

1 + w
n−w

)n converges

to
1

f(w)
. Therefore, we can expand the definition of f to (−∞, 0), so we have that f(x) =

lim
(
1 + x

n

)n
is always defined and that f(−x) =

1

f(x)
.

C2. For the function f(x) = lim
(
1 + x

n

)n
, whose existence was proven above, show that

f(q) = eq for every q ∈ Q as follows:
a) Show f(mx) = f(x)m for every m ∈ N, and note it’s obvious for m = 0. Use it to show
that f(m) = em for every m ∈ N and m = 0.
b) Use a) to show f(q) = eq for every q ∈ Q, q > 0.
c) Use the last sentence from the problem above to show that f(q) = eq for every q ∈ Q,
q < 0.


