Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define the infimum of a nonempty subset S of \mathbf{R} .

Theory 2. (3pts) State the order properties of R.

Theory 3. (3pts) State the lemma that characterizes when a number u is the supremum of a set S, but does not use ε .

Type A problems (5pts each)

A1. Show using Mathematical Induction that $1 + x + \dots + x^n = \frac{x^{n+1} - 1}{x - 1}$ for any $x \in \mathbf{R}$, $x \neq 1$.

A2. Let A and B be sets, where A is denumerable and B is finite. Show that $A \setminus B$ is denumerable.

A3. If $a, b \in \mathbf{R}$, use only the axiomatic algebraic properties of \mathbf{R} to show that $\frac{1}{\frac{1}{a}} = a$ and $\frac{1}{ab} = \frac{1}{a} \cdot \frac{1}{b}$.

A4. Let S be nonempty and bounded. Show that 1) inf $S \leq \sup S$, and 2) if $\inf S = \sup S$, then S has only one element.

A5. Show using the triangle inequality: for all $x, y \in \mathbf{R}$, $||x| - |y|| \le |x - y|$.

A6. For these subsets of **R**, if they exist, find a lower bound of *S*, an upper bound of *S*, inf *S* and sup *S*. There is no need to justify. a) $S = \{x \in \mathbf{Q} \mid \sqrt{2} < x < \sqrt{3}\}$ b) $S = \{\frac{1}{n} + \frac{1}{n^2} \mid n \in \mathbf{N}\}$

Type B problems (8pts each)

B1. Show that the set $\{\frac{1}{n} - \frac{1}{m} \mid m, n \in \mathbb{N}\}$ is denumerable.

B2. If $a, b \in \mathbf{R}$, use only the axiomatic algebraic properties of \mathbf{R} to show that (-a)(-b) = ab, without proving (-1)a = -a first.

B3. Show by induction on n: every number of form $2^{2n-1}m$, where $m, n \in \mathbb{N}$ and m is odd has an irrational square root. (Note the predicate P(n) is: for every odd $m \in \mathbb{N}$, the number $2^{2n-1}m$ has an irrational square root. Basis is more involved, step is easy.)

B4. Determine and sketch the set of points in the plane satisfying $2|x| - |y| \ge 4$.

B5. Consider the subset S of **R**, $S = \left\{ n \cdot \frac{1 + (-1)^n}{2} + \frac{1}{n} \mid n \in \mathbf{N} \right\}$. If they exist, find a lower bound of S, an upper bound of S, inf S and sup S. Prove the details, including nonexistence of any of the quantities.

B6. Let $S \subset [0, \infty)$ be a nonempty set. Show that $\inf S^2 = (\inf S)^2$. (As expected, $S^2 = \{s^2 \mid s \in S\}$.)

B7. Let $a, b \in \mathbf{R}$, a < b. Show that the interval (a, b) contains a rational number of the form $\frac{m}{2^n}$, for some $m \in \mathbf{Z}$ and $n \in \mathbf{N}$.

TYPE C PROBLEMS (12PTS EACH)

C1. Let $\alpha \in \mathbf{R}$ be such that α^3 is rational, but α and α^2 are not. Show: if $s, t, u \in \mathbf{Q}$ are such that $s + t\alpha + u\alpha^2 = 0$, then s = t = u = 0. *Hint: multiply by a number of form* $x + y\alpha$, $x, y \in \mathbf{Q}$, and choose x and y wisely.

C2. Let $C = \{A \subseteq \mathbf{Q} \mid A \subseteq (0, 1)\}$. Show that this collection of subsets of \mathbf{Q} is uncountable. *Hint: start by showing the map* $C \to \mathbf{R}$, $A \mapsto \sup A$ *is surjective.*

Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

- **Theory 1.** (3pts) Define when a sequence tends to $-\infty$.
- Theory 2. (3pts) Define a Cauchy sequence.

Theory 3. (3pts) State the Bolzano-Weierstrass Theorem.

Type A problems (5pts each)

A1. Use the definition of the limit to show $\lim \frac{n-1}{n^2+2n} = 0$.

A2. Find $\lim \left(1 + \frac{1}{2n}\right)^{n-1}$.

A3. Use the "ratio test" or other method to find the limit of the sequence $\frac{n^{3n}}{(3n)!}$.

A4. Determine if the sequence $\left(\sin \frac{(2n+1)\pi}{4}\right)$ converges. Justify your answer with known theorems.

A5. Show: if $\lim x_n = x$ and x < 0, then there is a $K \in \mathbb{N}$ such that $x_n < 0$ for all $n \ge K$.

A6. Prove the extended limit law $L \cdot \infty = \infty$ for L > 0. That is, use the definition to show: if $\lim x_n = L \in \mathbf{R}$, L > 0 and $\lim y_n = \infty$, then $\lim (x_n y_n) = \infty$.

TYPE B PROBLEMS (8PTS EACH)

B1. Find $\lim \sqrt[n]{(1+\frac{1}{n})^n + 2^n}$.

B2. Let the sequence x_n be recursively given by: $x_1 = 6$, $x_{n+1} = \sqrt{5 + 2x_n}$. Show that this sequence converges and find its limit.

B3. Let $x_n = 1 + b + b^2 + \cdots + b^n$, |b| < 1. Show that x_n is a contractive sequence and find $\lim x_n$. Note that the obvious recursive relation $x_{n+1} = x_n + b^{n+1}$ does not help. For example, use $bx_n = \ldots$

B4. Let $x_n = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}$. Show directly that (x_n) is a Cauchy sequence. The inequality $\frac{1}{k^2} \leq \frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}$ will be helpful.

B5. Prove the other version of the "ratio test:" for a sequence of positive numbers (x_n) , if $\lim \frac{x_{n+1}}{x_n} = L$ and $L \in \mathbf{R}$ and L > 1, then $\lim x_n = \infty$.

B6. Let (x_n) be a bounded sequence and $w = \inf\{x_n \mid n \in \mathbf{N}\}$. Suppose that for every v > w, $x_n < v$ for infinitely many indices n. (Put another way: for every v > w, the set $\{n \in \mathbf{N} \mid x_n < v\}$ is infinite.) Show there exists a subsequence (x_{n_k}) such that $\lim x_{n_k} = w$.

C1. Let the sequence x_n be recursively given by: $x_1 > 0$, $x_{n+1} = \frac{1}{2} \left(x_n + \frac{7}{x_n} \right)$.

a) Show for any a > 0: $\frac{1}{2} \left(a + \frac{7}{a} \right) \ge \sqrt{7}$. b) Show that x_n is a decreasing sequence for $n \ge 2$ (part a) will help) and show it is bounded below.

c) Find $\lim x_n$.

C2. Let $x_n = \sqrt[n]{n!}$.

- a) Show (x_n) is increasing. b) Show $n! \ge k! k^{n-k}$ for every k = 1, 2, ..., n.

c) Fixing a k, use b) to get an inequality that will give you the limit of (x_n) .

Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Let $f : A \to \mathbf{R}$ and let c be a cluster point of A. Define what $\lim_{x \to c} f(x) = L$ means.

Theory 2. (3pts) State the limit law for products.

Theory 3. (3pts) State the Squeeze Theorem for limits.

Type A problems (8pts each)

A1. Find the limits, if they exist (just a computation is expected): a) $\lim_{x \to c} \frac{\frac{1}{x} - \frac{1}{c}}{x - c}$ b) $\lim_{x \to 1} \frac{x^2 + x - 2}{x - \sqrt{x}}$.

A2. Does
$$\lim_{x\to 0} x^2 \left(3 + \sin\frac{1}{x}\right)$$
 exist? If yes, find it, if not, justify.

A3. Show that $\lim_{x \to 0} \frac{1}{x} \cos \frac{1}{x}$ does not exist.

A4. Let $f : \mathbf{R} \to \mathbf{R}$ and let $\lim_{x \to c} f(x) = L > 0$. Show that there is a δ -neighborhood of c so that f(x) > 0 for all $x \in V_{\delta}(c), x \neq c$. Is f(c) > 0 also true?

A5. Use the definition to show that if $\lim_{x\to 0} f(x) = L$, then $\lim_{x\to c} f(x-c) = L$. (This justifies the following "substitution" when finding limits: $\lim_{x\to c} f(x) = [u = x - c] = \lim_{u\to 0} f(u+c)$.)

TYPE B PROBLEMS (8PTS EACH)

B1. Use the definition to show that $\lim_{x \to c} x^4 = c^4$.

B2. Use the definition to show that $\lim_{x \to \frac{1}{4}} \frac{1}{x} = 4$.

B3. Suppose that $\lim_{x\to c} (f(x) - g(x)) = L$ and $\lim_{x\to c} (f(x)^2 + g(x)^2) = M$ for some $L, M \in \mathbf{R}$. Show that $\lim_{x\to c} f(x)g(x)$ exists and express it using L and M.

B4. Find all the cluster points (in **R**) of the set $\{\frac{1}{n} \mid n \in \mathbf{N}\}$. (There aren't many!) You do not need to write a detailed proof, but justify your answer with a picture and some good words. Justify also why certain points are *not* cluster points of the set.

B5. Suppose $f, g : \mathbf{R} \to \mathbf{R}$, and $\lim_{x \to c} g(x) = M$, $\lim_{x \to M} f(x) = L$ and there is a δ so that $g(x) \neq M$ for all $x \in V_{\delta}(c)$. Show that $\lim_{x \to c} f(g(x)) = L$.

B6. Let $f : \mathbf{R} \to \mathbf{R}$ be given by $f(x) = \begin{cases} 2x+3, & \text{if } x \in \mathbf{Q} \\ 5-x, & \text{if } x \notin \mathbf{Q} \end{cases}$ Find all the numbers c for which $\lim_{x \to c} f(x)$ exists, and prove the limit exists. Justify why $\lim_{x \to c} f(x)$ does not exist for the other numbers.

Type C problems (12pts each)

C1. Recall that we proved that the sequence $e_n = (1 + \frac{1}{n})^n$ was increasing and bounded. Using the same computation with slight modifications, we can prove that for every $x \ge 1$, the sequence $(1 + \frac{x}{n})^n$ is increasing and bounded and hence converges to some number f(x). Assuming this fact, do the following problems.

a) For 0 < x < 1, show that $\left(1 + \frac{x}{n}\right)^n$ converges as follows: Let $M \in \mathbb{N}$ be such that $Mx \ge 1$, then $\left(1 + \frac{Mx}{n}\right)^n$ converges by the above. Then $\left(1 + \frac{x}{n}\right)^n = \left(1 + \frac{Mx}{Mn}\right)^m$. Continue with the algebra to show this sequence converges, expanding the definition of f(x) to [0, 1).

b) Now let x < 0, x = -w. Show that $\left(1 + \frac{x}{n}\right)^n$ converges by rewriting:

$$\left(1+\frac{x}{n}\right)^n = \left(1-\frac{w}{n}\right)^n = \frac{1}{\left(1+\frac{w}{n-w}\right)^n}$$

Now let $M \in N$ be such that $M - 1 \leq w < M$. Show that

$$\frac{1}{1 + \frac{w}{n - (M-1)}} \ge \frac{1}{1 + \frac{w}{n - w}} > \frac{1}{1 + \frac{w}{n - M}}$$

and use the squeeze theorem and the results from above to show that $\frac{1}{\left(1+\frac{w}{n-w}\right)^n}$ converges

to $\frac{1}{f(w)}$. Therefore, we can expand the definition of f to $(-\infty, 0)$, so we have that $f(x) = \lim (1 + \frac{x}{n})^n$ is always defined and that $f(-x) = \frac{1}{f(x)}$.

C2. For the function $f(x) = \lim \left(1 + \frac{x}{n}\right)^n$, whose existence was proven above, show that $f(q) = e^q$ for every $q \in \mathbf{Q}$ as follows:

a) Show $f(mx) = f(x)^m$ for every $m \in \mathbf{N}$, and note it's obvious for m = 0. Use it to show that $f(m) = e^m$ for every $m \in \mathbf{N}$ and m = 0.

b) Use a) to show $f(q) = e^q$ for every $q \in \mathbf{Q}, q > 0$.

c) Use the last sentence from the problem above to show that $f(q) = e^q$ for every $q \in \mathbf{Q}$, q < 0.