Advanced Calculus 1 - Exam 1 MAT 525/625, Fall 2023 - D. Ivanšić

Name:
Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define the infimum of a nonempty subset S of \mathbf{R}.
Theory 2. (3pts) State the order properties of \mathbf{R}.
Theory 3. (3pts) State the lemma that characterizes when a number u is the supremum of a set S, but does not use ε.

Type A problems (5pts Each)

A1. Show using Mathematical Induction that $1+x+\cdots+x^{n}=\frac{x^{n+1}-1}{x-1}$ for any $x \in \mathbf{R}$, $x \neq 1$.

A2. Let A and B be sets, where A is denumerable and B is finite. Show that $A \backslash B$ is denumerable.

A3. If $a, b \in \mathbf{R}$, use only the axiomatic algebraic properties of \mathbf{R} to show that $\frac{1}{\frac{1}{a}}=a$ and $\frac{1}{a b}=\frac{1}{a} \cdot \frac{1}{b}$.

A4. Let S be nonempty and bounded. Show that 1) $\inf S \leq \sup S$, and 2) if $\inf S=\sup S$, then S has only one element.

A5. Show using the triangle inequality: for all $x, y \in \mathbf{R},||x|-|y|| \leq|x-y|$.
A6. For these subsets of \mathbf{R}, if they exist, find a lower bound of S, an upper bound of S, $\inf S$ and $\sup S$. There is no need to justify.
a) $S=\{x \in \mathbf{Q} \mid \sqrt{2}<x<\sqrt{3}\}$
b) $S=\left\{\left.\frac{1}{n}+\frac{1}{n^{2}} \right\rvert\, n \in \mathbf{N}\right\}$

Type B problems (8pts Each)

B1. Show that the set $\left\{\left.\frac{1}{n}-\frac{1}{m} \right\rvert\, m, n \in \mathbf{N}\right\}$ is denumerable.
B2. If $a, b \in \mathbf{R}$, use only the axiomatic algebraic properties of \mathbf{R} to show that $(-a)(-b)=a b$, without proving $(-1) a=-a$ first.

B3. Show by induction on n : every number of form $2^{2 n-1} m$, where $m, n \in \mathbf{N}$ and m is odd has an irrational square root. (Note the predicate $P(n)$ is: for every odd $m \in \mathbf{N}$, the number $2^{2 n-1} m$ has an irrational square root. Basis is more involved, step is easy.)

B4. Determine and sketch the set of points in the plane satisfying $2|x|-|y| \geq 4$.

B5. Consider the subset S of $\mathbf{R}, S=\left\{\left.n \cdot \frac{1+(-1)^{n}}{2}+\frac{1}{n} \right\rvert\, n \in \mathbf{N}\right\}$. If they exist, find a lower bound of S, an upper bound of S, inf S and $\sup S$. Prove the details, including nonexistence of any of the quantities.

B6. Let $S \subset[0, \infty)$ be a nonempty set. Show that $\inf S^{2}=(\inf S)^{2}$. (As expected, $S^{2}=\left\{s^{2} \mid s \in S\right\}$.)

B7. Let $a, b \in \mathbf{R}, a<b$. Show that the interval (a, b) contains a rational number of the form $\frac{m}{2^{n}}$, for some $m \in \mathbf{Z}$ and $n \in \mathbf{N}$.

Type C problems (12PTS Each)
$\mathbf{C 1}$. Let $\alpha \in \mathbf{R}$ be such that α^{3} is rational, but α and α^{2} are not. Show: if $s, t, u \in \mathbf{Q}$ are such that $s+t \alpha+u \alpha^{2}=0$, then $s=t=u=0$. Hint: multiply by a number of form $x+y \alpha$, $x, y \in \mathbf{Q}$, and choose x and y wisely.
$\mathbf{C} 2$. Let $\mathcal{C}=\{A \subseteq \mathbf{Q} \mid A \subseteq(0,1)\}$. Show that this collection of subsets of \mathbf{Q} is uncountable. Hint: start by showing the $\operatorname{map} \mathcal{C} \rightarrow \mathbf{R}, A \mapsto \sup A$ is surjective.

Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define when a sequence tends to $-\infty$.
Theory 2. (3pts) Define a Cauchy sequence.
Theory 3. (3pts) State the Bolzano-Weierstrass Theorem.

Type A problems (5pts Each)

A1. Use the definition of the limit to show $\lim \frac{n-1}{n^{2}+2 n}=0$.
A2. Find $\lim \left(1+\frac{1}{2 n}\right)^{n-1}$.
A3. Use the "ratio test" or other method to find the limit of the sequence $\frac{n^{3 n}}{(3 n)!}$.
A4. Determine if the sequence $\left(\sin \frac{(2 n+1) \pi}{4}\right)$ converges. Justify your answer with known theorems.

A5. Show: if $\lim x_{n}=x$ and $x<0$, then there is a $K \in \mathbf{N}$ such that $x_{n}<0$ for all $n \geq K$.
A6. Prove the extended limit law $L \cdot \infty=\infty$ for $L>0$. That is, use the definition to show: if $\lim x_{n}=L \in \mathbf{R}, L>0$ and $\lim y_{n}=\infty$, then $\lim \left(x_{n} y_{n}\right)=\infty$.

Type B problems (8pts Each)

B1. Find $\lim \sqrt[n]{\left(1+\frac{1}{n}\right)^{n}+2^{n}}$.
B2. Let the sequence x_{n} be recursively given by: $x_{1}=6, x_{n+1}=\sqrt{5+2 x_{n}}$. Show that this sequence converges and find its limit.

B3. Let $x_{n}=1+b+b^{2}+\cdots+b^{n},|b|<1$. Show that x_{n} is a contractive sequence and find $\lim x_{n}$. Note that the obvious recursive relation $x_{n+1}=x_{n}+b^{n+1}$ does not help. For example, use $b x_{n}=\ldots$.

B4. Let $x_{n}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}$. Show directly that $\left(x_{n}\right)$ is a Cauchy sequence. The inequality $\frac{1}{k^{2}} \leq \frac{1}{k(k-1)}=\frac{1}{k-1}-\frac{1}{k}$ will be helpful.

B5. Prove the other version of the "ratio test:" for a sequence of positive numbers $\left(x_{n}\right)$, if $\lim \frac{x_{n+1}}{x_{n}}=L$ and $L \in \mathbf{R}$ and $L>1$, then $\lim x_{n}=\infty$.

B6. Let $\left(x_{n}\right)$ be a bounded sequence and $w=\inf \left\{x_{n} \mid n \in \mathbf{N}\right\}$. Suppose that for every $v>w, x_{n}<v$ for infinitely many indices n. (Put another way: for every $v>w$, the set $\left\{n \in \mathbf{N} \mid x_{n}<v\right\}$ is infinite.) Show there exists a subsequence $\left(x_{n_{k}}\right)$ such that $\lim x_{n_{k}}=w$.

Type C Problems (12PTS EACH)

C1. Let the sequence x_{n} be recursively given by: $x_{1}>0, x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{7}{x_{n}}\right)$.
a) Show for any $a>0: \frac{1}{2}\left(a+\frac{7}{a}\right) \geq \sqrt{7}$.
b) Show that x_{n} is a decreasing sequence for $n \geq 2$ (part a) will help) and show it is bounded below.
c) Find $\lim x_{n}$.

C2. Let $x_{n}=\sqrt[n]{n!}$.
a) Show $\left(x_{n}\right)$ is increasing.
b) Show $n!\geq k!k^{n-k}$ for every $k=1,2, \ldots, n$.
c) Fixing a k, use b) to get an inequality that will give you the limit of $\left(x_{n}\right)$.

Advanced Calculus 1 - Exam 3
MAT 525/625, Fall 2023 - D. Ivanšić
Name:
Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Let $f: A \rightarrow \mathbf{R}$ and let c be a cluster point of A. Define what $\lim _{x \rightarrow c} f(x)=L$ means.

Theory 2. (3pts) State the limit law for products.
Theory 3. (3pts) State the Squeeze Theorem for limits.

Type A problems (8pts each)

A1. Find the limits, if they exist (just a computation is expected):
a) $\lim _{x \rightarrow c} \frac{\frac{1}{x}-\frac{1}{c}}{x-c}$
b) $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-\sqrt{x}}$.

A2. Does $\lim _{x \rightarrow 0} x^{2}\left(3+\sin \frac{1}{x}\right)$ exist? If yes, find it, if not, justify.
A3. Show that $\lim _{x \rightarrow 0} \frac{1}{x} \cos \frac{1}{x}$ does not exist.
A4. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ and let $\lim _{x \rightarrow c} f(x)=L>0$. Show that there is a δ-neighborhood of c so that $f(x)>0$ for all $x \in V_{\delta}(c), x \neq c$. Is $f(c)>0$ also true?

A5. Use the definition to show that if $\lim _{x \rightarrow 0} f(x)=L$, then $\lim _{x \rightarrow c} f(x-c)=L$. (This justifies the following "substitution" when finding limits: $\lim _{x \rightarrow c} f(x)=[u=x-c]=\lim _{u \rightarrow 0} f(u+c)$.)

Type B problems (8pts Each)

B1. Use the definition to show that $\lim _{x \rightarrow c} x^{4}=c^{4}$.
B2. Use the definition to show that $\lim _{x \rightarrow \frac{1}{4}} \frac{1}{x}=4$.
B3. Suppose that $\lim _{x \rightarrow c}(f(x)-g(x))=L$ and $\lim _{x \rightarrow c}\left(f(x)^{2}+g(x)^{2}\right)=M$ for some $L, M \in \mathbf{R}$. Show that $\lim _{x \rightarrow c} f(x) g(x)$ exists and express it using L and M.

B4. Find all the cluster points (in \mathbf{R}) of the set $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbf{N}\right\}$. (There aren't many!) You do not need to write a detailed proof, but justify your answer with a picture and some good words. Justify also why certain points are not cluster points of the set.

B5. Suppose $f, g: \mathbf{R} \rightarrow \mathbf{R}$, and $\lim _{x \rightarrow c} g(x)=M, \lim _{x \rightarrow M} f(x)=L$ and there is a δ so that $g(x) \neq M$ for all $x \in V_{\delta}(c)$. Show that $\lim _{x \rightarrow c} f(g(x))=L$.

B6. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be given by $f(x)= \begin{cases}2 x+3, & \text { if } x \in \mathbf{Q} \\ 5-x, & \text { if } x \notin \mathbf{Q}\end{cases}$
Find all the numbers c for which $\lim _{x \rightarrow c} f(x)$ exists, and prove the limit exists. Justify why $\lim _{x \rightarrow c} f(x)$ does not exist for the other numbers.

Type C problems (12pts Each)

C1. Recall that we proved that the sequence $e_{n}=\left(1+\frac{1}{n}\right)^{n}$ was increasing and bounded. Using the same computation with slight modifications, we can prove that for every $x \geq 1$, the sequence $\left(1+\frac{x}{n}\right)^{n}$ is increasing and bounded and hence converges to some number $f(x)$. Assuming this fact, do the following problems.
a) For $0<x<1$, show that $\left(1+\frac{x}{n}\right)^{n}$ converges as follows: Let $M \in \mathbf{N}$ be such that $M x \geq 1$, then $\left(1+\frac{M x}{n}\right)^{n}$ converges by the above. Then $\left(1+\frac{x}{n}\right)^{n}=\left(1+\frac{M x}{M n}\right)^{\cdots}$. Continue with the algebra to show this sequence converges, expanding the definition of $f(x)$ to $[0,1)$.
b) Now let $x<0, x=-w$. Show that $\left(1+\frac{x}{n}\right)^{n}$ converges by rewriting:

$$
\left(1+\frac{x}{n}\right)^{n}=\left(1-\frac{w}{n}\right)^{n}=\frac{1}{\left(1+\frac{w}{n-w}\right)^{n}}
$$

Now let $M \in N$ be such that $M-1 \leq w<M$. Show that

$$
\frac{1}{1+\frac{w}{n-(M-1)}} \geq \frac{1}{1+\frac{w}{n-w}}>\frac{1}{1+\frac{w}{n-M}}
$$

and use the squeeze theorem and the results from above to show that $\frac{1}{\left(1+\frac{w}{n-w}\right)^{n}}$ converges to $\frac{1}{f(w)}$. Therefore, we can expand the definition of f to $(-\infty, 0)$, so we have that $f(x)=$ $\lim \left(1+\frac{x}{n}\right)^{n}$ is always defined and that $f(-x)=\frac{1}{f(x)}$.

C2. For the function $f(x)=\lim \left(1+\frac{x}{n}\right)^{n}$, whose existence was proven above, show that $f(q)=e^{q}$ for every $q \in \mathbf{Q}$ as follows:
a) Show $f(m x)=f(x)^{m}$ for every $m \in \mathbf{N}$, and note it's obvious for $m=0$. Use it to show that $f(m)=e^{m}$ for every $m \in \mathbf{N}$ and $m=0$.
b) Use a) to show $f(q)=e^{q}$ for every $q \in \mathbf{Q}, q>0$.
c) Use the last sentence from the problem above to show that $f(q)=e^{q}$ for every $q \in \mathbf{Q}$, $q<0$.

