Advanced Calculus 1 - Exam 3 MAT 525/625, Fall 2019 - D. Ivanšić

Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define when a function $f: A \rightarrow \mathbf{R}$ is bounded on a neighborhood of c, a cluster point of A.

Theory 2. (3pts) Define what $\lim _{x \rightarrow \infty} f(x)=L$ means.
Theory 3. (3pts) State the limit law for quotients.

Type A problems (8pts Each)

A1. Find the limits, if they exist (just a computation is expected):
a) $\lim _{x \rightarrow-2} \frac{x^{2}-3 x-10}{x+2}$
b) $\lim _{x \rightarrow \infty}(\sqrt{x+7}-\sqrt{x+3})$.

A2. Does $\lim _{x \rightarrow \infty} \frac{\sin x+\cos x}{x}$ exist? If yes, find it, if not, justify.
A3. Show that $\lim _{x \rightarrow-1} \cos \frac{1}{x+1}$ does not exist.
A4. Use the definition to show that $\lim _{x \rightarrow 3}(2 x+1)=7$.
A5. Let $f(x) \geq 0$ and $L=\lim _{x \rightarrow c} f(x)$. Use the definition to show that $L \geq 0$, by showing that $L \geq-\epsilon$ for every $\epsilon>0$.

Type B problems (8pts Each)

B1. Use the definition to show that $\lim _{x \rightarrow c} \frac{1}{x^{2}+4}=\frac{1}{c^{2}+4}$.
B2. Use the definition to prove the extended limit law $\infty+\infty=\infty$, that is, if $\lim _{x \rightarrow c} f(x)=\infty$ and $\lim _{x \rightarrow c} g(x)=\infty$, show that $\lim _{x \rightarrow c}(f(x)+g(x))=\infty$.

B3. Suppose $f(x), g(x)>0, \lim _{x \rightarrow c} f(x) g(x)=L$ and $\lim _{x \rightarrow c} f(x)=0$. Show that $\lim _{x \rightarrow c} g(x)=\infty$.
B4. Find all the cluster points (in \mathbf{R}) of the set $(-\sqrt{2}, \sqrt{2}) \cap \mathbf{Q}$. You do not need to write a detailed proof, but justify your answer with a picture and a few words. Justify also why certain points are not cluster points of the set.

B5. Use the definition and properties of the sine function to show that $\lim _{x \rightarrow c} \sin x=\sin c$. You will find the formula $\sin u-\sin v=2 \sin \frac{u-v}{2} \cos \frac{u+v}{2}$ useful.

B6. Suppose $f, g:(a, \infty) \rightarrow \mathbf{R}$, and $\lim _{x \rightarrow \infty} f(x)=L$ and $\lim _{x \rightarrow L} g(x)=\infty$. Show that $\lim _{x \rightarrow \infty} f(g(x))=L$.

B7. Use a picture of the unit circle and areas to show that $\lim _{\theta \rightarrow 0} \cos \theta=1$ by showing that $\lim _{\theta \rightarrow 0}(1-\cos \theta)=0$.

Type C problems (12pts Each)

C1. Let $f:(0, \infty) \rightarrow \mathbf{R}, f(x)=0$ if x is irrational, $f(x)=\frac{1}{n}$ if x is a rational number represented by $\frac{m}{n}$ in reduced form. Show that for every $c, \lim _{x \rightarrow c} f(x)=0$.
Hint: show that in an open interval of width $\frac{1}{n}$ there are only finitely many rational numbers x so that $f(x)>\frac{1}{n}$ and take it from there.

