Advanced Calculus 1 - Exam 2 MAT 525/625, Fall 2019 - D. Ivanšić

Name: Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define when the limit of a sequence $\left(x_{n}\right)$ is x.
Theory 2. (3pts) State the squeeze theorem for sequences.
Theory 3. (3pts) State the Cauchy Convergence Theorem.

Type A problems (5pts Each)

A1. Use the definition of the limit to show $\lim \frac{n+3}{5 n+4}=\frac{1}{5}$.
A2. Find $\lim \left(1+\frac{1}{n+1}\right)^{n-1}$.
A3. Find $\lim \sqrt[n]{n^{2}+4 n+7}$.
A4. Use the "ratio test" or other method to find the limit of the sequence $\frac{b^{n}}{n!}, b>0$.
A5. Prove the extended limit law $L+\infty=\infty$. That is, use the definition to show: if $\lim x_{n}=L \in \mathbf{R}$ and $\lim y_{n}=\infty$, then $\lim \left(x_{n}+y_{n}\right)=\infty$.

A6. Use the definition to show that the sequence $x_{n}=\frac{n}{n+6}$ is Cauchy.

Type B problems (8pts Each)

B1. Let the sequence x_{n} be recursively given by: $x_{1}=1, x_{n+1}=3+\sqrt{2 x_{n}+1}$. Show that this sequence converges and find its limit.

B2. Prove the limit law $\lim \left(x_{n} \cdot y_{n}\right)=\lim x_{n} \cdot \lim y_{n}$.
B3. Let $a>0$ and $b>1$. Find $\lim \frac{n^{a}}{b^{n}}$.
B4. Show that if a sequence of positive numbers $\left(x_{n}\right)$ is unbounded, then there exists a subsequence $\left(x_{n_{k}}\right)$ such that $\lim x_{n_{k}}=\infty$.

B5. Let the sequence x_{n} be recursively given by: $x_{1}>0, x_{n+1}=\frac{1}{3+x_{n}}$. Show that this sequence is contractive and find its limit.

B6. Suppose that for two positive sequences $\left(x_{n}\right)$ and $\left(y_{n}\right), \lim x_{n} y_{n}=\infty$ and $\left(x_{n}\right)$ is bounded. Show that $\lim y_{n}=\infty$.

B7. Let $\lim x_{n}=x$ and $\lim y_{n}=y$, where $x<y, x, y \in \mathbf{R}$, and let $z_{n}=\max \left\{x_{n}, y_{n}\right\}$. Show that $\lim z_{n}=y$.

C1. Let $\left(x_{n}\right)$ be a bounded sequence that does not converge to x. (It does not mean it converges to some other number.) Show $\left(x_{n}\right)$ has a subsequence that converges to a number y, where $y \neq x$.

C2. Let $x_{n}=\sqrt[n]{n!}$.
a) Show $\left(x_{n}\right)$ is increasing.
b) Show $n!\geq k!k^{n-k}$ for every $k=1,2, \ldots, n$.
c) Fixing a k, use b) to get an inequality that will give you the limit of $\left(x_{n}\right)$.

