Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define a denumerable set.

Theory 2. (3pts) State the multiplicative properties of \mathbf{R} . That is, state the four algebraic properties of \mathbf{R} that deal only with multiplication.

Theory 3. (3pts) State the Completeness Property of R.

Type A problems (5pts each)

A1. Show using Mathematical Induction that $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$. (Here *i* is the imaginary unit, $i^2 = -1$, and recall that $\sin(x + y) = \sin x \cos y + \cos x \sin y$ and $\cos(x + y) = \cos x \cos y - \sin x \sin y$).

A2. Let *A* and *B* be sets, where *A* is finite. Show: $A \cup B$ is finite if and only if *B* is finite. You may use the statement that the union of two disjoint finite sets is finite.

A3. If $a, b \in \mathbf{R}$, use only the axiomatic algebraic properties of \mathbf{R} to show that -(a+b) = (-a) + (-b), and $a \cdot (-b) = -ab$.

A4. Show that for all $x, y, z \in \mathbf{R}$, $||x - y| - |z - y|| \le |x - z|$.

A5. If they exist, find a lower bound of *S*, an upper bound of *S*, inf *S* and sup *S*. There is no need to justify. a) $S = \{x \mid x < 0\}$ b) $S = \{\frac{n-1}{n} \mid n \in \mathbf{N}\}$

TYPE B PROBLEMS (8PTS EACH)

B1. Show that the collection of two-element subsets of N is denumerable.

B2. Recall that we set $\frac{a}{b} = a \cdot \frac{1}{b}$. Use only the axiomatic algebraic properties of **R** to show the rule for adding fractions: $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$. (You will need to prove an intermediate lemma.)

B3. Show directly that $\sqrt{8}$ is not a rational number, that is, without resorting to knowledge that $\sqrt{2}$ is not rational.

B4. Determine and sketch the set of points in the plane satisfying $|x| - 2|y| \le 4$.

B5. Consider the subset S of \mathbf{R} , $S = \{x \in \mathbf{Q} \mid x > \pi\}$. If they exist, find a lower bound of S, an upper bound of S, inf S and sup S. Prove the details, including nonexistence of any of the quantities.

B6. Let $S \subset (0, \infty)$ be a nonempty set that is bounded above. Show that $\inf \frac{1}{S} = \frac{1}{\sup S}$. (As expected, $\frac{1}{S} = \{\frac{1}{s} \mid s \in S\}$.) **C1.** Show that the set of all functions $\mathbf{N} \to \{0, 1\}$ is uncountable. *Hint: any function* $a : \mathbf{N} \to \{0, 1\}$ may be thought of as a sequence of 0's and 1's.

C2. Let S be a bounded nonempty subset of **R**.

a) Show by example that, in general, $\sup |S| \neq |\sup S|$.

b) Figure out the correct expression for $\sup |S|$ and prove it. Some homework statements may be helpful here, and you may use them without proof.