Advanced Calculus 1 - Exam 1
MAT 525/625, Fall 2019 - D. Ivanšić
Name:
Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define a denumerable set.
Theory 2. (3pts) State the multiplicative properties of \mathbf{R}. That is, state the four algebraic properties of \mathbf{R} that deal only with multiplication.

Theory 3. (3pts) State the Completeness Property of R.

Type A problems (5pts Each)

A1. Show using Mathematical Induction that $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$. (Here i is the imaginary unit, $i^{2}=-1$, and recall that $\sin (x+y)=\sin x \cos y+\cos x \sin y$ and $\cos (x+y)=\cos x \cos y-\sin x \sin y)$.

A2. Let A and B be sets, where A is finite. Show: $A \cup B$ is finite if and only if B is finite. You may use the statement that the union of two disjoint finite sets is finite.

A3. If $a, b \in \mathbf{R}$, use only the axiomatic algebraic properties of \mathbf{R} to show that $-(a+b)=$ $(-a)+(-b)$, and $a \cdot(-b)=-a b$.

A4. Show that for all $x, y, z \in \mathbf{R}, \| x-y|-|z-y|| \leq|x-z|$.
A5. If they exist, find a lower bound of S, an upper bound of $S, \inf S$ and $\sup S$. There is no need to justify.
a) $S=\{x \mid x<0\}$
b) $S=\left\{\left.\frac{n-1}{n} \right\rvert\, n \in \mathbf{N}\right\}$

Type B problems (8pts Each)

B1. Show that the collection of two-element subsets of \mathbf{N} is denumerable.
B2. Recall that we set $\frac{a}{b}=a \cdot \frac{1}{b}$. Use only the axiomatic algebraic properties of \mathbf{R} to show the rule for adding fractions: $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$. (You will need to prove an intermediate lemma.)

B3. Show directly that $\sqrt{8}$ is not a rational number, that is, without resorting to knowledge that $\sqrt{2}$ is not rational.

B4. Determine and sketch the set of points in the plane satisfying $|x|-2|y| \leq 4$.
B5. Consider the subset S of $\mathbf{R}, S=\{x \in \mathbf{Q} \mid x>\pi\}$. If they exist, find a lower bound of S, an upper bound of $S, \inf S$ and $\sup S$. Prove the details, including nonexistence of any of the quantities.

B6. Let $S \subset(0, \infty)$ be a nonempty set that is bounded above. Show that $\inf \frac{1}{S}=\frac{1}{\sup S}$. (As expected, $\frac{1}{S}=\left\{\left.\frac{1}{s} \right\rvert\, s \in S\right\}$.)

C1. Show that the set of all functions $\mathbf{N} \rightarrow\{0,1\}$ is uncountable. Hint: any function $a: \mathbf{N} \rightarrow\{0,1\}$ may be thought of as a sequence of 0 's and 1 's.

C2. Let S be a bounded nonempty subset of \mathbf{R}.
a) Show by example that, in general, $\sup |S| \neq|\sup S|$.
b) Figure out the correct expression for sup $|S|$ and prove it. Some homework statements may be helpful here, and you may use them without proof.

