Advanced Calculus 1 - Problem Farm 1 MAT 525/625 Fall 2023 - D. Ivanšić

Sets and Functions

Type A problems (5pts Each)

In A1-A4 you do not need to write a formula or prove anything, just illustrate what the function does with an arrow diagram f rom which the pattern is clear.

A1. Give an example of a function $f: \mathbf{Z} \rightarrow \mathbf{Z}$ that is a bijection, but not the identity. Give an example of a function $f: \mathbf{N} \rightarrow \mathbf{N}$ that is a bijection, but not the identity.

A2. Give an example of a function $f: \mathbf{N} \rightarrow \mathbf{N}$ that is injective, but not surjective. Give an example of a function $f: \mathbf{Z} \rightarrow \mathbf{Z}$ that is injective, but not surjective.

A3. Give an example of a function $f: \mathbf{N} \rightarrow \mathbf{N}$ that is surjective, but not injective. Give an example of a function $f: \mathbf{Z} \rightarrow \mathbf{Z}$ that is surjective, but not injective.

A4. Give an example of a function $f: \mathbf{N} \rightarrow \mathbf{Z}$ that is surjective, but not injective.
A5. Give an example (formula) of a function $f: \mathbf{R} \rightarrow \mathbf{R}$ that is surjective, but not injective. Justify with graph. Give an example (formula) of a function $f: \mathbf{R} \rightarrow \mathbf{R}$ that is injective, but not surjective. Justify with graph.

A6. Give an example of a function $f: A \rightarrow B$, where both A and B are finite sets (i.e., you can draw a picture with blobs), and sets $E, F \subset A$, for which $f(E \cap F) \neq f(E) \cap f(F)$.

A7. Let functions $g: X \rightarrow Y$ and $f: Y \rightarrow Z$ be injective. Show that $f \circ g$ is injective.
A8. Let functions $g: X \rightarrow Y$ and $f: Y \rightarrow Z$ be surjective. Show that $f \circ g$ is surjective. Note that the consequence of $\mathbf{A 7}$ and $\mathbf{A 8}$ is that the composite of bijections is bijective.

A9. Let $f(x)=\sin x$.
a) Determine the direct image $f(A)$, if $A=\left(\frac{\pi}{4}, \frac{5 \pi}{6}\right)$.
b) Determine the inverse image $f^{-1}(B)$, if $B=\left(\frac{1}{2}, \frac{\sqrt{2}}{2}\right)$.

Type B problems (8pts Each)

B1. Let $p: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ be given by $p(x, y)=x$.
a) Is p injective? Surjective?
b) Find $p^{-1}([-1,5))$, and draw it in the plane.

B2. Let $p: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ be given by $p(x, y)=2 x+y$.
a) Is p injective? Surjective?
b) Find $p^{-1}([-1,5))$, and draw it in the plane.

B3. Let $A_{n}=\{n, n+1, \ldots\}$ be subsets of \mathbf{N}. Determine $\bigcup_{n=1}^{\infty} A_{n}$ and $\bigcap_{n=1}^{\infty} A_{n}$ and justify your answers.

B4. Let $A_{n}=\{k \in \mathbf{N} \mid k$ divides $n\}$ be subsets of \mathbf{N}. For example, $A_{12}=\{1,2,3,4,6,12\}$ and $A_{14}=\{1,2,7,14\}$. Determine $\bigcup_{n=1}^{\infty} A_{n}$ and $\bigcap_{n=1}^{\infty} A_{n}$ and justify your answers.

B5. For $n \geq 2, n \in \mathbf{N}$, let $A_{n}=\left(-1+\frac{1}{n}, 1-\frac{1}{n}\right)$ be intervals in \mathbf{R}. Determine $\bigcup_{n=1}^{\infty} A_{n}$ and $\bigcap_{n=1}^{\infty} A_{n}$ and justify your answers.

Type C problems (12Pts Each)

C1. For $n \in \mathbf{N}$, let $A_{n}=\left[n, n^{2}\right]$ be intervals in \mathbf{R}. Determine $\bigcup_{n=1}^{\infty} A_{n}$ and $\bigcap_{n=1}^{\infty} A_{n}$ and justify your answers.

Real Numbers

Type A problems (5pts Each)

For the sets listed below do the following (justify each answer a little, perhaps with a drawing, but do not go into an axiom-based proof):
a) Find an upper bound and a lower bound, if any.
b) Find $\inf S$ and $\sup S$, if they exist.

A1. $S=\{1,3,7,10\}$
A2. $S=(-\infty, 5]$
A3. $\quad S=(-1,4)_{\substack{\text { iopen } \\ \text { interval) }}}^{\substack{\text { (on }}}$
A4. $S=\{1\} \cup[2,4] \cup\{5\}$
A5. $S=\{x \in \mathbf{Q} \mid 3 \leq x<7\}$
A6. $S=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbf{N}\right\}$
A7. $S=\left\{\left.(-1)^{n} \frac{1}{n} \right\rvert\, n \in \mathbf{N}\right\}$
A8. $S=\left\{e^{x} \mid x \in \mathbf{R}\right\} \quad$ A9. $S=\{\arctan x \mid x \in \mathbf{R}\}$
A10. $S=\left\{(-1)^{n}\left(2-\frac{1}{n}\right), \mid n \in \mathbf{N}\right\} \quad$ A11. $S=\left\{x \in \mathbf{Q} \mid x^{2}<2\right\}$

Type B problems (8pts each)

B1. Show that the set of complex numbers \mathbf{C} cannot be made into an ordered field. In other words, show that it is impossible to find a set $P \subset \mathbf{C}$ that satisfies the order properties from 2.1.5. (Hint: suppose it is possible and derive a contradiction using the element $i \in \mathbf{C}$.)

B2. Formulate and prove statements for inf S that are analogous to Lemmas 2.3.3 and 2.3.4.
B3. Recall that $\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1) \cdots(n-k+1)}{k!}$.
a) Show that $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$.
b) Use a) and induction to prove the binomial formula: $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$.

B4. Let $f: X \rightarrow Y$ be a function and $\left\{B_{n}, n \in \mathbf{N}\right\}$ a collection of subsets of Y. Prove the following: $f^{-1}\left(\bigcup_{n=1}^{\infty} B_{n}\right)=\bigcup_{n=1}^{\infty} f^{-1}\left(B_{n}\right)$ and $f^{-1}\left(\bigcap_{n=1}^{\infty} B_{n}\right)=\bigcap_{n=1}^{\infty} f^{-1}\left(B_{n}\right)$.

B5. Show directly that the set X of sequences of 0 s and 1 s is uncountable. Then, using the characteristic function χ_{A}, show there is a bijective map between the set X and the set of all subsets of \mathbf{N}, which we have shown to be uncountable.

C1. (Juicy!) Do problem 2.1.9 for the set $K=\{s+t \sqrt[3]{2}+u \sqrt[3]{4} \mid s, t, u \in \mathbf{Q}\}$. Or, if you prefer, do it more generally for the set $K=\left\{s+t \alpha+u \alpha^{2} \mid s, t, u \in \mathbf{Q}\right\}$, where $\alpha \notin \mathbf{Q}$ is a number for which $\alpha^{3} \in \mathbf{Q}$. (Hint for part b of 2.1.9: you are trying to rationalize the denominator in $\frac{1}{s+t \alpha+u \alpha^{2}}$. If you multiply numerator and denominator by $x+y \alpha+z \alpha^{2}$, what conditions on $x, y, z \in \mathbf{Q}$ give you a rational denominator, and can you always satisfy the conditions?)

C2. Show for every $n \geq 3: \sqrt[n+1]{n+1}<\sqrt[n]{n}$. (Hint: show it is equivalent to $(n+1)^{n}<n^{n+1}$, and prove this, perhaps with the help of the binomial formula.)

