Advanced Calculus 1 - Lecture notes MAT 525/625, Fall 2023 - D. Ivanšić

4.1 Limits of Functions

Definition 4.1.1. Let $A \subseteq \mathbf{R}$. A point $c \in \mathbf{R}$ is a cluster point of A if for every $\delta>0$ there exists at least one point $x \in A, x \neq c$ such that $|x-c|<\delta$. Alternatively, we can say that every δ-neighborhood of c contains a point from A other than c.

Example. Show 0, 1, 2 are all cluster points of the sets $[0,2]$ and $(0,2)$. Identify all the cluster points of these sets.

Example. $\sqrt{2}$ is a cluster point of \mathbf{Q}.

Theorem 4.1.2. A number c is a cluster point of $A \subseteq \mathbf{R}$ if and only if there exists a sequence $\left(a_{n}\right)$ in A such that $\lim a_{n}=c$ and $a_{n} \neq c$ for all $n \in \mathbf{N}$.

Proof.

Note. A finite set has no cluster points.

Definition 4.1.4. Let $A \subseteq \mathbf{R}, c$ a cluster point of A, and let $f: A \rightarrow \mathbf{R}$ be a function. We say that a real number L is the limit of f at c if for every $\varepsilon>0$ there exists a $\delta>0$ such that if $0<|x-c|<\delta$ and $x \in A$, then $|f(x)-L|<\varepsilon$. We write

$$
\lim _{x \rightarrow c} f(x)=L \text { or } f(x) \rightarrow L \text { as } x \rightarrow c
$$

and say that f converges to L at c. If the limit of f at c does not exist, we say that f diverges at c.

The number δ depends on ε, so it is sometimes written as $\delta(\varepsilon)$ (but we do not define a function $\varepsilon \mapsto \delta(\varepsilon))$. Typically, the smaller ε is, the smaller the corresponding $\delta(\varepsilon)$.

Note. The definition is equivalent to: for every ε-neighborhood $V_{\varepsilon}(L)$ of L, there is a δ neighborhood of c such that every $x \in V_{\delta}(c) \cap A$ is sent to $f(x) \in V_{\varepsilon}(L)$, that is $f\left(V_{\delta}(c)\right) \subseteq$ $V_{\varepsilon}(L)$. This language is used to generalize the idea of a limit to topological spaces.

Theorem 4.1.5. Let c be a cluster point of A and $f: A \rightarrow \mathbf{R}$. If f has a limit at c, it is unique.

Proof.

Example. $\lim _{x \rightarrow c} b=b$ and $\lim _{x \rightarrow c} x=c$

Sequential Criterion 4.1.8. Let c be a cluster point of A and $f: A \rightarrow \mathbf{R}$. The following are equivalent.

1) $\lim _{x \rightarrow c} f(x)=L$
2) For every sequence $\left(x_{n}\right)$ in A such that x_{n} converges to c and $x_{n} \neq c$ for all $n \in \mathbf{N}$, the sequence $f\left(x_{n}\right)$ converges to L.

Proof.

Divergence Criteria 4.1.9. Let c be a cluster point of A and $f: A \rightarrow \mathbf{R}$.
a) f does not have limit L at c if and only if there exists a sequence $\left(x_{n}\right)$ in A such that $x_{n} \neq c$ for all $n \in \mathbf{N}$ and $x_{n} \rightarrow c$ but $f\left(x_{n}\right)$ does not converge to L.
b) f does not have a limit at c if and only if there exists a sequence $\left(x_{n}\right)$ in A such that $x_{n} \neq c$ for all $n \in \mathbf{N}$ and $x_{n} \rightarrow c$ but $f\left(x_{n}\right)$ does not converge.
Proof. a) is the negation of the equivalence 1) $\Longleftrightarrow 2$) from above;
$\mathrm{b} \Longleftarrow)$ The assumption is "for every L, $\lim f\left(x_{n}\right) \neq L$," which by $\left.\neg 2\right) \Longrightarrow \neg 1$) implies for every $\left.L, \lim _{x \rightarrow c} f(x) \neq L ; \mathrm{b} \Longrightarrow\right)$ prove the contrapositive: assume for every sequence $\left(x_{n}\right)$, $\lim f\left(x_{n}\right)$ exists. Then for every two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right), \lim f\left(x_{n}\right)=\lim f\left(y_{n}\right)$, because the limit for the shuffled sequence exists. Now 2$) \Longrightarrow 1$) gives us that $\lim _{x \rightarrow c} f(x)$ exists.

Example. $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist.

Example. $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist.

Advanced Calculus 1 - Lecture notes MAT 525/625, Fall 2023 - D. Ivanšić

4.2 Limit Theorems

Definition 4.2.1. Let c be a cluster point of A and $f: A \rightarrow \mathbf{R}$. We say f is bounded on a neighborhood of c if there exists a δ-neighborhood of c and an $M>0$ such that $|f(x)|<M$ for all $x \in A \cap V_{\delta}(c)$.

Theorem 4.2.2. Let c be a cluster point of A and $f: A \rightarrow \mathbf{R}$. If f has a limit at c, then f is bounded on some neighborhood of c.

Proof.

Theorem 4.2.4. Let c be a cluster point of A and $f, g: A \rightarrow \mathbf{R}$. Suppose $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ exist. Then
a) $\begin{aligned} \lim _{x \rightarrow c}(f(x)+g(x))=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x) & \lim _{x \rightarrow c} b f(x)=b \lim _{x \rightarrow c} f(x) \\ \lim _{x \rightarrow c}(f(x)-g(x))=\lim _{x \rightarrow c} f(x)-\lim _{x \rightarrow c} g(x) & \lim _{x \rightarrow c}(f(x) g(x))=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)\end{aligned}$
b) If, furthermore, $g(x) \neq 0$ for all $x \in A$ and $\lim _{x \rightarrow c} g(x) \neq 0$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$.

Proof. Similar to Theorem 3.2.3.

Useful exercise: redo the rest of the proofs for limits of functions without using the sequential criterion.

Theorem 4.2.6. Let c be a cluster point of A and $f, g, h: A \rightarrow \mathbf{R}$. Suppose $\lim _{x \rightarrow c} f(x)$, $\lim _{x \rightarrow c} g(x)$ and $\lim _{x \rightarrow c} h(x)$ exist. If there is a δ such that

$$
f(x) \leq g(x) \leq h(x) \text { for all } x \in A \cap V_{\delta}(c) \text {, then } \lim _{x \rightarrow c} f(x) \leq \lim _{x \rightarrow c} g(x) \leq \lim _{x \rightarrow c} h(x) .
$$

Proof. is similar to analogous theorem for sequences.

Squeeze Theorem 4.2.7. Let c be a cluster point of A and $f, g, h: A \rightarrow \mathbf{R}$. If there is a δ such that

$$
f(x) \leq g(x) \leq h(x) \text { for all } x \in A \cap V_{\delta}(c)
$$

and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L$, then $\lim _{x \rightarrow c} g(x)=L$.
Proof.

Example. For any polynomial $p: \mathbf{R} \rightarrow \mathbf{R}, \lim _{x \rightarrow c} p(x)=p(c)$. For any rational function f and c such that $f(c)$ is defined (i.e. the denominator is not zero at c), $\lim _{x \rightarrow c} f(x)=f(c)$.

Example. $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$

Theorem 4.2.9. Let c be a cluster point of A and $f: A \rightarrow \mathbf{R}$. If $\lim _{x \rightarrow c} f(x)>0\left(\lim _{x \rightarrow c} f(x)<0\right)$, then there exists a δ-neighborhood $V_{\delta}(c)$ such that $f(x)>0(f(x)<0)$ for all $x \in A \cap V_{\delta}(c)$. Proof.

