
Advanced Calculus 1 — Lecture notes
MAT 525/625, Fall 2023 — D. Ivanšić

3.1 Sequences and

Their Limits

A sequence is essentially an infinite list of real numbers:

1, 2, 4, 8, 16, . . . , 2n, . . .

1,−1, 1,−1, 1, . . . , (−1)n−1 . . .

0,−1

2
,
2

3
,−3

4
,
4

5
, . . . , (−1)n−1n− 1

n

More formally, we have:

Definition 3.1.1. A sequence of real numbers is a function X : N → R.

Notation: X(n) is usually written as xn and called the n-th term of a sequence.
Notation representing a sequence: X, (xn), (xn | n ∈ N), (x1, x2, x3, . . . )

Note the difference: {xn | n ∈ N} = set that contains the terms of (xn) = range of X
(xn | n ∈ N) is the sequence, so takes the order into account

For the second example above {xn | n ∈ N} =

Example. B = (b, b, b, . . . ) is the constant sequence b.

Example. (bn | n ∈ N) is the geometric sequence: xn = b · xn−1

Example.

(
1√
n
| n ∈ N

)
Example. Sequences may be given recursively: f1 = 1, f2 = 1, fn+1 = fn + fn−1 for n ≥ 2.
We get (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . ), called the Fibonacci sequence.

Definition 3.1.3. A sequence (xn) converges to x ∈ R if for every ε > 0 there exists a
K ∈ N such that for all n ≥ K, |xn − x| < ε. We also say (xn) has a limit, it is x.

Note. The number K depends on ε, so it is sometimes written as K(ε) (but we do not
define a function ε 7→ K(ε)). Typically, the smaller ε is, the greater the corresponding K(ε).

If a sequence has a limit, it is called convergent, otherwise, it is divergent.
Notation: x = lim xn or x = limX or xn → x.

Note. The definition is equivalent to: x = lim xn if and only if for every ε-neighborhood
of x, all but finitely many terms of x are in Vε(x).
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Example. lim
1

n
= 0.

Example. For the constant sequence (b) = (b, b, b, . . . ), lim b = b.

Example. The sequence ((−1)n−1n ∈ N) = (1,−1, 1,−1, 1, . . . , ) is divergent.

Example. For every c > 1, lim
1

nc
= 0.

Theorem 3.1.4. A sequence in R can have at most one limit.

Proof.
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Definition 3.1.8. Let X = (x1, x2, . . . ) be a sequence. The m-tail Xm of the sequence X
is the sequence we get from X by deleting the first m terms:

Xm = (xm+1, xm+2, . . . )

Example. If X =

(
1

2
,
1

4
,
1

8
, . . . ,

1

2n
, . . .

)
, then X4 =

Theorem 3.1.9. Let X be a sequence, m ∈ N. Then X converges if and only if Xm

converges. In this case, limX = limXm.

Another way to state the gist of the theorem: convergence does not depend on what happens
in the first finitely many terms.

Example. The sequence

(
1, 10, 100, . . . , 1057,

1

2
,
1

3
,
1

4
,
1

5
, . . .

)
converges.

Definition. A sequence X has a property ultimately if some tail of X has this property.

Example. The sequence (1, 2, 3, . . . , 101, 101, 101, . . . ) is ultimately constant.

Note. A sequence X converges to x if and only if for every ε > 0, all the terms of X are
ultimately in the ε-neighborhood of x.
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Theorem 3.1.10. Let (xn) be a sequence, x ∈ R and let (an) be a sequence that converges
to 0 with an ≥ 0 for all n ∈ N. If for some constant C and some m ∈ N we have

|xn − x| ≤ Can, for all n ≥ m.

Then lim xn = x.

Proof.

Example. If a > 0, then lim
1

1 + na
= 0.

Example. If |b| < 1, then lim bn = 0.

Example. For every c > 0, lim n
√
c = 1.
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Example. lim n
√
n = 1.
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Advanced Calculus 1 — Lecture notes
MAT 525/625, Fall 2023 — D. Ivanšić 3.2 Limit Theorems

Definition 3.2.1. A sequence X = (xn) is bounded if there exists a number M > 0 such
that |xn| < M for all n ∈ N.

Note. A sequence is bounded if and only if {xn | n ∈ N} is a bounded set.

Theorem 3.2.2. A convergent sequence is bounded.

Proof.

Given sequences X and Y we can form sequences X ± Y , X · Y , cX and
X

Y
in the obvious

way.

X =

(
1,

1

2
,
1

3
, . . . ,

1

n
, . . .

)
Y =

(
1,

1

2
,
1

4
, . . . ,

1

2n−1
, . . .

)

X ± Y = X · Y =

5X =
X

Y
=

Note. The sequence
X

Y
is defined only if yn 6= 0 for all n ∈ N.

Theorem 3.2.3. Let X and Y converge to x and y, respectively. Then

a) lim(X + Y ) = x+ y = limX + limY lim cX = cx = c limX

lim(X − Y ) = x− y = limX limY lim(X · Y ) = x · y = limX · limY

b) If, furthermore, yn 6= 0 for all n ∈ N, then lim
X

Y
=

x

y
=

limX

limY
.
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Proof. a)

b)
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Example. If f(x) is a rational function, then lim f(xn) = f(lim xn).

Example. lim
4n3 − 5n2 + 4n+ 7

n3
=

Example. lim
−2n4 + n2 − 11n+ 5

n5 + n4 + 2n3 + 1
=

Example. lim
n3 − 4n2 + 10

3n3 + n2 + 2n− 3
=
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Theorem 3.2.4. If x = lim xn, and for some m ∈ N, xn ≥ 0 for all n ≥ m, then x ≥ 0.

Proof.

Theorem 3.2.5. If (xn) and (yn) are convergent, and for some m ∈ N, xn ≤ yn for all
n ≥ m, then lim xn ≤ lim yn.

Proof.

Theorem 3.2.6. If (xn) is convergent, and for some m ∈ N, a ≤ xn ≤ b for all n ≥ m, then
a ≤ lim xn ≤ b.

Proof.

Squeeze Theorem 3.2.7. Let (xn), (yn) and (zn) be sequences such that

for some m ∈ N, xn ≤ yn ≤ zn for all n ≥ m, and lim xn = lim zn

Then (yn) is convergent, and lim yn = lim xn = lim zn.

Proof.
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Example. Show that lim
e

1
n cos 1

n
− e−n sin(n2 + n)

n
= 0.

Theorem 3.2.9. If sequence (xn) converges to x, then the sequence (|xn|) converges to |x|.

Theorem 3.2.10. If sequence (xn) converges to x, and xn ≥ 0 for all n ∈ N, then the
sequence (

√
xn) converges to

√
x.

Proof. Read in book.

Theorem 3.2.11 (ratio test). Let (xn) be a sequence such that xn > 0 for all n ∈ N, and

lim
xn+1

xn

= L. If L < 1, then (xn) converges and lim xn = 0.

Proof.

Example. Show that lim
(n!)2

(2n)!
= 0.
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Advanced Calculus 1 — Lecture notes
MAT 525/625, Fall 2023 — D. Ivanšić 3.3 Monotone Sequences

Definition 3.3.1. A sequence (xn) is increasing if x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤ . . .

decreasing if x1 ≥ x2 ≥ · · · ≥ xn ≥ xn+1 ≥ . . .

A sequence is monotone if it is increasing or decreasing.

Example. These sequences are monotone.

(1, 2, 3, 4, . . . ) (1, a, a2, a3, . . . ) for a > 1(
1,

1

2
,
1

3
,
1

4
, . . .

)
(1, b, b2, b3, . . . ) for 0 < b < 1

Example. These sequences are not monotone.

(1, 2, 3, 6, 5, 4, 7, 8, 9, 12, 11, 10, . . . ) (1, 2, 1, 2, . . . )

Theorem 3.3.2. A monotone sequence is convergent if and only if it is bounded.
Furthermore,

a) If (xn) is increasing and bounded, then lim xn = sup{xn | n ∈ N}.
b) If (yn) is decreasing and bounded, then lim yn = inf{yn | n ∈ N}

Proof.
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Example. Consider the sequence given by x1 = 0, xn+1 =
1

5
(3xn + 1). Is it monotone or

bounded? If both, what is its limit?

Now consider the sequence given by x1 = 2, xn+1 =
1

5
(3xn+1). Is it monotone or bounded?

If both, what is its limit?

For the sequence x1 = b, xn+1 =
1

5
(3xn + 1), what condition determines if it is increasing or

decreasing?
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Write the overall conclusion on the convergence of the sequence x1 = b, xn+1 =
1

5
(3xn + 1).

Example. Read example 3.3.5 in book, for any a ≥ 0, a sequence that converges to
√
a.

Example. Show that the sequence hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
is not bounded.

For which n is hn > 51?

Example. Show that the seqence en =

(
1 +

1

n

)n

is increasing and bounded.
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By the Monotone Convergence Theorem, the sequence (en) converges to some positive real
number which is called e.

Fact. e is irrational and transcendental, which means it is not a solution of any equation
anx

n + an−1x
n−1 + · · ·+ a1x+ a0 = 0 with rational coefficients a0, . . . , an.
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Advanced Calculus 1 — Lecture notes
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Definition 3.4.1. Let X = (xn) be a sequence of real numbers and let n1 < n2 < . . . be a
strictly increasing sequence of natural numbers. The sequence X ′ = (xn1 , xn2 , . . . , xnk

, . . . )
is called a subsequence of X.

Example. If X =

(
1,

1

2
,
1

3
,
1

4
, . . .

)
, here are some subsequences:

(
1,

1

3
,
1

5
,
1

7
, . . .

) (
1

2
,
1

3
,
1

5
,
1

7
,
1

11
,
1

13
,
1

17
. . .

)
(
1

2
,
1

4
,
1

8
,
1

16
. . .

)
any tail of X

Not a subsequence:

(
1

4
,
1

2
,
1

8
,
1

6
,
1

12
,
1

10
, . . .

)

Theorem 3.4.2. If (xn) converges to x, then every subsequence of (xn) converges to x.

Proof.

Example. We can show lim n
√
c = 1 and lim n

√
n = 1 with a subsequence trick.
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Theorem 3.4.4. For a sequence (xn), the following are equivalent:

1) (xn) does not converge to x ∈ R.

2) There exists an ε0 such that for every k ∈ N there is an nk ∈ N so that nk ≥ k and
|xnk

− x| > ε0.

3) There exists an ε0 and a subsequence xnk
such that |xnk

− x| > ε0.

A Divergence Criterion 3.4.5. If 1) or 2) holds, the sequence (xn) is divergent.

1) (xn) has two convergent subsequences (xnk
) and (xrk) whose limits are not equal.

2) (xn) is unbounded.

Proof.

Ch.3-16



Monotone Subsequence Theorem 3.4.7. Every sequence (xn) has a monotone subse-
quence.

Proof.

Bolzano-Weierstrass Theorem 3.4.8. A bounded sequence has a convergent subse-
quence.

Proof.

Theorem 3.4.9. Let (xn) be a bounded sequence with the property that every subsequence
converges to the same real number x. Then (xn) converges to x.

Proof.
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MAT 525/625, Fall 2023 — D. Ivanšić 3.5 The Cauchy Criterion

Definition 3.5.1. A sequence X = (xn) of real numbers is called a Cauchy sequence if for
every ε > 0 there exists a K ∈ N such that for all n,m ≥ K we have |xn − xm| < ε.

Example. The sequence ((−1)n) is not Cauchy.

Example. The sequence fn = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
is a Cauchy sequence.

Lemma 3.5.3. If (xn) is a convergent sequence, then it is a Cauchy sequence.

Proof.

Lemma 3.5.4. A Cauchy sequence is bounded.

Proof.
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Cauchy Convergence Criterion 3.5.5. A sequence of real numbers is convergent if and
only if it is a Cauchy sequence.

Proof.

Example. The sequence (fn), defined earlier, converges. It converges to e because it can
be shown that |fn − en| < 6

n
, where en is the sequence from section 3.3. One can use the

sequence fn as the sequence that defines e.

Note. The convergence criterion is not true in Q: a Cauchy sequence of rationals need not
converge to a rational number.

Consider example 3.3.5 in book: s1 = 1, sn+1 =
1
2

(
sn +

2
sn

)
is a Cauchy sequence of rational

numbers, because it converges in R (but it can be directly proved, too). Furthermore, it
converges to a number whose square is 2, which cannot be in Q.

Nonconvergence in Q of a Cauchy sequence is because Q does not have the completeness
property of R, which crept into the Convergence Criterion via the Monotone Convergence
Theorem, and that one uses completeness in an unavoidable way.
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Actually, one can show that every Cauchy sequence converges if and only if every set bounded
above has a supremum. This may be used to expand the idea of completeness to sets that
do not have order properties. For such a set, we can define completeness as “every Cauchy
sequence converges.”

Example. The set (C,+, ·) is complete by the Cauchy sequence definition. Note that | | is
defined in C, so the definition of convergence and Cauchy sequence makes sense.

Example. Cauchy sequences can be used to construct R rigorously. Consider the set of all
Cauchy sequences with terms in Q:

R = {(xn) | xn ∈ Q for all n ∈ N and (xn) is Cauchy}

Define a relation ∼ on R: (xn) ∼ (yn) if for every m ∈ N there is a K ∈ N such that
|xn− yn| < 1

m
for all n ≥ K. This is meant to capture all Cauchy sequences that “converge”

to the same limit in a class. One shows:

1) The relation ∼ is an equivalence relation (reflexive, commutative and transitive), which
breaks up R into a set of classes R/∼.

2) On the set R/∼ we can define the operations +, · satisfying algebraic properties of R.

3) In the set R we can define a set P of “positive elements:” (xn) ∈ P if there exists an
m ∈ N such that there is a K ∈ N so xn > 1

m
for all n ≥ K. It can be shown that if

(xn) ∼ (yn) and (xn) ∈ P , then (yn) ∈ P , which yields a set P/∼ in R/∼, “positive
elements” of R/∼. One shows that P/∼ satisfies all the order properties of R, so we
can introduce the relation <.

4) Using <, we can define boundedness of a set and a supremum in R/∼, and then show
R/∼ satisfies the completeness property of R.

One then defines the set of real numbers as R = R/∼.
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Definition 3.5.7. We say a sequence (xn) is contractive if there exists a constant C ∈ (0, 1)
such that for all n ∈ N

|xn+2 − xn+1| ≤ C|xn+1 − xn|

Theorem 3.5.8. Every contractive sequence is a Cauchy sequence, hence convergent.

Proof.

Corollary 3.5.9. If (xn) is a contractive sequence with constant C ∈ (0, 1) and limit x,
then

i) |x− xn| ≤
Cn−1

1− C
|x2 − x1| ii) |x− xn| ≤

C

1− C
|xn − xn−1|
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Example. Consider the sequence x1 = a, xn+1 =
1

5
(3xn + 1). Show that the sequence is

contractive and verify estimates in the corollary.
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3.6 Properly Divergent

Sequences

We define precisely what it means for a sequence to tend to ∞ or −∞.

Definition 3.6.1. A sequence (xn) of real numbers

1) tends to ∞, if for every M ∈ R there exists a K ∈ N such that for all n ≥ K, xn > M .
We write lim xn = ∞.

2) tends to −∞, if for every M ∈ R there exists a K ∈ N such that for all n ≥ K,
xn < M . We write lim xn = −∞.

In either case, we say (xn) is properly divergent.

Example. limn = ∞ and limnc = ∞ for every c > 0.

Example. lim cn = ∞ for every c > 1.

Theorem 3.6.3. A monotone sequence is properly divergent if and only if it is unbounded.

a) If (xn) is increasing and unbounded, then lim xn = ∞.

b) If (xn) is decreasing and unbounded, then lim xn = −∞.

Proof.
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Theorem 3.6.4. Let (xn) and (yn) be sequences so that there exists an m ∈ N so xn ≤ yn
for all n ≥ m.

a) If lim xn = ∞, then lim yn = ∞
b) If lim yn = −∞, then lim xn = −∞

Proof.

Note. Knowing that lim yn = ∞ does not give you anything about lim xn.

Theorem 3.6.5. Let (xn) and (yn) be sequences of positive real numbers, and suppose that

lim
xn

yn
= L, for some L > 0.

Then lim xn = ∞ if and only if lim yn = ∞.

Proof.

Extended Limit Laws. These give some information on convergence or proper divergence
of a sequence built from sequences using algebraic operations +,−, ·,÷.

1

0±
= ±∞ L

±∞
= 0 L · ∞ =

{
∞ if L > 0 ∞+∞ = ∞ L+∞ = ∞

−∞ if L < 0 ∞ ·∞ = ∞ L−∞ = −∞
Note that each of the statements is shorthand for a statement about limits. For example,

a) 1
0+

= ∞ stands for: if lim xn = 0 and xn > 0, then lim 1
xn

= ∞.

b) L ·∞ = ∞ for L > 0 stands for: if lim xn = L > 0 and lim yn = ∞, then lim xnyn = ∞.
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