Advanced Calculus 1 — Lecture notes 3.1 Sequences and
MAT 525/625, Fall 2023 — D. Ivansi¢ Their Limits

A sequence is essentially an infinite list of real numbers:
1,2,4,8,16,...,2", ...
1,-1,1,-1,1,..., (=1t ...
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More formally, we have:
Definition 3.1.1. A sequence of real numbers is a function X : N — R.

Notation: X (n) is usually written as x, and called the n-th term of a sequence.
Notation representing a sequence: X, (z,), (x, | n € N), (1,29, 3,...)

Note the difference: {z, | n € N} = set that contains the terms of (z,) = range of X
(x, | n € N) is the sequence, so takes the order into account

For the second example above {z, | n € N} =

Example. B = (b,b,b,...) is the constant sequence b.

Example. (0" | n € N) is the geometric sequence: z,, = b+ x,_;

1
Example. (% |ne N)

Example. Sequences may be given recursively: f1 =1, fo =1, foi1 = fu + fuo1 for n > 2.
We get (1,1,2,3,5,8,13,21,34,55,...), called the Fibonacci sequence.

Definition 3.1.3. A sequence (x,) converges to x € R if for every ¢ > 0 there exists a
K € N such that for all n > K, |z, — 2| < e. We also say (z,) has a limit, it is z.

Note. The number K depends on ¢, so it is sometimes written as K(g) (but we do not
define a function € — K (¢)). Typically, the smaller ¢ is, the greater the corresponding K (¢).

If a sequence has a limit, it is called convergent, otherwise, it is divergent.
Notation: z = limz,, or z =lim X or z,, — =x.

Note. The definition is equivalent to: x = limx,, if and only if for every e-neighborhood
of z, all but finitely many terms of x are in V().
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Example. lim — = 0.
n

Example. For the constant sequence (b) = (b,b,b,...), limb = b.

Example. The sequence ((—1)""'n € N) = (1,-1,1,—-1,1,...,) is divergent.

1
Example. For every ¢ > 1, lim — = 0.
nC

Theorem 3.1.4. A sequence in R can have at most one limit.

Proof.
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Definition 3.1.8. Let X = (z1,x2,...) be a sequence. The m-tail X,, of the sequence X
is the sequence we get from X by deleting the first m terms:

Xm = (xm+1, LTm+2y -« - - )

I

1
Example. If X = < — .. .), then X, =

1
787"'72n

N | —
] =

Theorem 3.1.9. Let X be a sequence, m € N. Then X converges if and only if X,
converges. In this case, lim X = lim X,,.

Another way to state the gist of the theorem: convergence does not depend on what happens
in the first finitely many terms.

1111
Example. The sequence (1, 10,100, ..., 107, SR E > converges.

Definition. A sequence X has a property ultimately if some tail of X has this property.
Example. The sequence (1,2,3,...,101,101,101,...) is ultimately constant.

Note. A sequence X converges to x if and only if for every ¢ > 0, all the terms of X are
ultimately in the e-neighborhood of z.
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Theorem 3.1.10. Let (z,) be a sequence, z € R and let (a,) be a sequence that converges
to 0 with a,, > 0 for all n € N. If for some constant C' and some m € N we have

|z, — x| < Ca,, for all n > m.

Then lim z,, = x.

Proof.

Example. If a > 0, then lim
+ na

Example. If |b| < 1, then limb" = 0.

Example. For every ¢ > 0, lim /c = 1.
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Example. lim /n = 1.
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Advanced Calculus 1 — Lecture notes
MAT 525/625, Fall 2023 — D. Ivansié 3.2 Limit Theorems

Definition 3.2.1. A sequence X = (x,) is bounded if there exists a number M > 0 such
that |z,| < M for all n € N.

Note. A sequence is bounded if and only if {z, | n € N} is a bounded set.

Theorem 3.2.2. A convergent sequence is bounded.

Proof.

X
Given sequences X and Y we can form sequences X £Y, X - Y, ¢X and v in the obvious
way.

X+Y = XY =
X

5X: _— =
Y

X
Note. The sequence v is defined only if y, # 0 for all n € N.

Theorem 3.2.3. Let X and Y converge to x and y, respectively. Then
a) Im(X+Y)=z+y=lImX +limY limecX =cr=climX

Im(X —Y)=2z—y=limXlimY Im(X-Y)=z-y=limX -limY
r  limX

y lmY’

b) If, furthermore, y,, # 0 for all n € N, then lim

X
Y
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Proof. a)
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Example. If f(z) is a rational function, then lim f(z,) = f(limz,).

4n3—5n2—|—4n+7_
ns N

Example. lim

—2n'4+n®—1ln+5
nd4+nt+2n3+1

Example. lim

) n3 —4n? + 10
Example. lim =
N3 4+n2+2n—3
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Theorem 3.2.4. If x = lim z,,, and for some m € N, z,, > 0 for all n > m, then z > 0.

Proof.

Theorem 3.2.5. If (z,,) and (y,) are convergent, and for some m € N, z,, < y, for all
n > m, then lim z,, <limy,.

Proof.

Theorem 3.2.6. If (z,,) is convergent, and for some m € N, a < z,, < b for all n > m, then
a<limz, <b.

Proof.

Squeeze Theorem 3.2.7. Let (z,), (y,) and (z,) be sequences such that
for some m € N, x, <y, < z, for all n > m, and limz, = lim z,

Then (y,,) is convergent, and lim y,, = lim z,, = lim z,,.

Proof.
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en cos = — e "sin(n? + n)

Example. Show that lim = 0.

n

Theorem 3.2.9. If sequence (x,) converges to x, then the sequence (|x,|) converges to |x|.

Theorem 3.2.10. If sequence (z,,) converges to x, and z,, > 0 for all n € N, then the
sequence (/Z,) converges to /.

Proof. Read in book.

Theorem 3.2.11 (ratio test). Let (z,) be a sequence such that x,, > 0 for all n € N, and
. Tn41
lim

= L. If L <1, then (x,) converges and lim z,, = 0.
Tn

Proof.

Example. Show that lim
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Advanced Calculus 1 — Lecture notes
MAT 525/625, Fall 2023 — D. Ivansié 3.3 Monotone Sequences

Definition 3.3.1. A sequence (x,,) is increasing if 11 < 29 < -+ <, <@y < ...

decreasing if 11 > x9 > -+ > 1, > X1 > ...

A sequence is monotone if it is increasing or decreasing.

Example. These sequences are monotone.

(1,2,3,4,...) (1,a,a,a®,...) for a > 1

111 )
(1757571,...) (1,b,b,b,...)for0<b<1

Example. These sequences are not monotone.

(1,2,3,6,5,4,7,8,9,12,11,10, ... ) (1,2,1,2,...)

Theorem 3.3.2. A monotone sequence is convergent if and only if it is bounded.
Furthermore,

a) If (x,) is increasing and bounded, then lim z,, = sup{x, | n € N}.

b) If (y,) is decreasing and bounded, then lim y,, = inf{y,, | n € N}

Proof.
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Example. Consider the sequence given by xy = 0, x,41 = 5(33:” + 1). Is it monotone or
bounded? If both, what is its limit?

1
Now consider the sequence given by xy = 2, x,,11 = 5(31:” +1). Is it monotone or bounded?
If both, what is its limit?

1
For the sequence 1 = b, x,41 = 5(396” + 1), what condition determines if it is increasing or

decreasing?
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Write the overall conclusion on the convergence of the sequence x; = b, x, 1 = 3(3:6“ +1).

Example. Read example 3.3.5 in book, for any a > 0, a sequence that converges to v/a.

1 1 1
Example. Show that the sequence h,, =1+ 3 + 3 + .-+ + — is not bounded.
n

For which n is h,, > 517

1 n
Example. Show that the seqence e,, = (1 + —) is increasing and bounded.
n

Ch.3-13



By the Monotone Convergence Theorem, the sequence (e,) converges to some positive real
number which is called e.

Fact. e is irrational and transcendental, which means it is not a solution of any equation
X" + Qp_12" '+ - 4+ a1z + ag = 0 with rational coefficients aq, . . ., a,.
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Advanced Calculus 1 — Lecture notes

MAT 525/625, Fall 2023 — D. Ivansié 3.4 Subsequences
Definition 3.4.1. Let X = (z,) be a sequence of real numbers and let ny < ny < ... be a
strictly increasing sequence of natural numbers. The sequence X' = (2., Ty, .-, Tnys - - - )

is called a subsequence of X.

111
Example. If X = <1, T .), here are some subsequences:
] 111 11111 1 1
35T 273’577 11713717
1111
— = =, ... il of X
(2’4’8’16 ) any tail o

11111 1 )

Theorem 3.4.2. If (z,,) converges to x, then every subsequence of (x,) converges to x.

Proof.

Example. We can show lim {/c = 1 and lim {/n = 1 with a subsequence trick.
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Theorem 3.4.4. For a sequence (z,), the following are equivalent:

1) (x,) does not converge to = € R.

2) There exists an g such that for every & € N there is an n € N so that ny > k and
|zp, — x| > €.

3) There exists an ¢ and a subsequence x,,, such that |z,, —z| > .

A Divergence Criterion 3.4.5. If 1) or 2) holds, the sequence (z,,) is divergent.

1) (z,) has two convergent subsequences (x,,) and (z,,) whose limits are not equal.
2) (z,) is unbounded.

Proof.
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Monotone Subsequence Theorem 3.4.7. Every sequence (x,) has a monotone subse-
quence.

Proof.

Bolzano-Weierstrass Theorem 3.4.8. A bounded sequence has a convergent subse-
quence.

Proof.

Theorem 3.4.9. Let (x,) be a bounded sequence with the property that every subsequence
converges to the same real number z. Then (x,,) converges to .

Proof.
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Advanced Calculus 1 — Lecture notes
MAT 525/625, Fall 2023 — D. Ivansié 3.5 The Cauchy Criterion

Definition 3.5.1. A sequence X = (z,,) of real numbers is called a Cauchy sequence if for
every ¢ > 0 there exists a K € N such that for all n,m > K we have |z, — z,,| < €.

Example. The sequence ((—1)") is not Cauchy.

1 1 1
Example. The sequence f, =1+ T + B +eot is a Cauchy sequence.

Lemma 3.5.3. If (z,) is a convergent sequence, then it is a Cauchy sequence.

Proof.

Lemma 3.5.4. A Cauchy sequence is bounded.

Proof.
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Cauchy Convergence Criterion 3.5.5. A sequence of real numbers is convergent if and
only if it is a Cauchy sequence.

Proof.

Example. The sequence (f,), defined earlier, converges. It converges to e because it can
be shown that |f, — e,| < %, where e, is the sequence from section 3.3. One can use the
sequence f, as the sequence that defines e.

Note. The convergence criterion is not true in Q: a Cauchy sequence of rationals need not
converge to a rational number.

1
2
numbers, because it converges in R (but it can be directly proved, too). Furthermore, it
converges to a number whose square is 2, which cannot be in Q.

Consider example 3.3.5 in book: s1 =1, 5,41 = (sn + %) is a Cauchy sequence of rational

Nonconvergence in Q of a Cauchy sequence is because Q does not have the completeness
property of R, which crept into the Convergence Criterion via the Monotone Convergence
Theorem, and that one uses completeness in an unavoidable way.
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Actually, one can show that every Cauchy sequence converges if and only if every set bounded
above has a supremum. This may be used to expand the idea of completeness to sets that
do not have order properties. For such a set, we can define completeness as “every Cauchy
sequence converges.”

Example. The set (C,+, ) is complete by the Cauchy sequence definition. Note that | | is
defined in C, so the definition of convergence and Cauchy sequence makes sense.

Example. Cauchy sequences can be used to construct R rigorously. Consider the set of all
Cauchy sequences with terms in Q:

R={(x,) |z, € Q for all n € N and (z,,) is Cauchy}

Define a relation ~ on R: (z,) ~ (y,) if for every m € N there is a K € N such that
|z — yn| < % for all n > K. This is meant to capture all Cauchy sequences that “converge”
to the same limit in a class. One shows:

1) The relation ~ is an equivalence relation (reflexive, commutative and transitive), which
breaks up R into a set of classes R/ ~.
2) On the set R/~ we can define the operations +, - satisfying algebraic properties of R.

3) In the set R we can define a set P of “positive elements:” (z,) € P if there exists an
m € N such that there is a K € N so z,, > % for all n > K. It can be shown that if
(xn) ~ (yn) and (z,) € P, then (y,) € P, which yields a set P/~ in R/ ~, “positive
elements” of R/~. One shows that P/~ satisfies all the order properties of R, so we
can introduce the relation <.

4) Using <, we can define boundedness of a set and a supremum in R/~ and then show
R/~ satisfies the completeness property of R.

One then defines the set of real numbers as R = R/ ~.
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Definition 3.5.7. We say a sequence (x,,) is contractive if there exists a constant C' € (0, 1)
such that for all n € N
|xn+2 - xn+1| S O|xn+1 - xn|

Theorem 3.5.8. Every contractive sequence is a Cauchy sequence, hence convergent.

Proof.

Corollary 3.5.9. If (z,,) is a contractive sequence with constant C' € (0,1) and limit z,
then

n—1

1-C

‘xn - xnfl‘

i) Jr—x,| < |zo — 21| i) o —x,] < ¢
n| = 2 1 n_l_C
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Example. Consider the sequence r; = a, x,11 = 3(31:” + 1). Show that the sequence is

contractive and verify estimates in the corollary.
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Advanced Calculus 1 — Lecture notes 3.6 Properly Dlvergent
MAT 525/625, Fall 2023 — D. Ivansié Sequences

We define precisely what it means for a sequence to tend to oo or —oc.

Definition 3.6.1. A sequence (x,,) of real numbers

1) tends to oo, if for every M € R there exists a K € N such that for alln > K, z,, > M.
We write lim x,, = oc.

2) tends to —oo, if for every M € R there exists a K € N such that for all n > K,
z, < M. We write lim z,, = —o0.

In either case, we say (z,) is properly divergent.

Example. limn = co and limn® = oo for every ¢ > 0.

Example. lim ¢" = oo for every ¢ > 1.

Theorem 3.6.3. A monotone sequence is properly divergent if and only if it is unbounded.

a) If (z,) is increasing and unbounded, then lim z,, = co.

b) If (x,) is decreasing and unbounded, then lim z,, = —oco.

Proof.
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Theorem 3.6.4. Let (z,,) and (y,) be sequences so that there exists an m € N so x,, < y,
for all n > m.

a) If limx, = oo, then limy, = oo

b) If limy, = —oo, then limz, = —oco

Proof.

Note. Knowing that lim y,, = co does not give you anything about lim z,,.

Theorem 3.6.5. Let (x,,) and (y,) be sequences of positive real numbers, and suppose that

lim 2% — L, for some L > 0.
Yn

Then lim x,, = oo if and only if lim y,, = co.

Proof.

Extended Limit Laws. These give some information on convergence or proper divergence
of a sequence built from sequences using algebraic operations +, —, -, =+.

O—i::I:oo :I:oo:O oo I L<0 00 - 00 = OO L—00=—-—

Note that each of the statements is shorthand for a statement about limits. For example,
a) ﬁ = oo stands for: if lim z,, = 0 and z,, > 0, then lim zi = 0.

1 L { oo if L>0 00 + 00 = 00 L+ 00=00
L-oco=4

b) L-oco = oo for L > 0 stands for: if limz,, = L > 0 and limy,, = oo, then lim x,y, = oco.
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