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2.1 The Algebraic and

Order Properties of R

In our mathematical education, we learned numbers starting with natural numbers and then
progressed to integers and rational numbers. The latter concepts are essentially based on
natural numbers. At the same time, we associated numbers with points on a line, and at
some point it became clear that rational numbers are not enough to describe all points on
the line. We then accept that there is a larger set of numbers associated to points on the
line that we call real numbers.

One can construct real numbers from rational numbers in a rigorous way, but this is fairly
theoretical and takes away from our study of calculus. This is why we skip it and take the
existence of real numbers, modeled with a line, on faith (i.e. as axioms).

There exists a set R, called the set of real numbers with the following properties.

Algebraic Properties of R 2.1.1. The set R has binary operations + and · (addition and
multiplication) which satisfy:

(A1) a+ b = b+ a, for all a, b ∈ R commutativity of +

(A2) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R associativity of +

(A3) There exists an element 0 ∈ R
such that 0 + a = a+ 0 = a.

existence of a zero (neutral) element for +

(A4) For every a ∈ R there exists an element
denoted −a such that (−a) + a = a+ (−a) = 0.

existence of an additive inverse
(opposite element) for +.

(M1) a · b = b · a, for all a, b ∈ R commutativity of ·
(M2) (a · b) · c = a · (b · c) for all a, b, c ∈ R associativity of ·
(M3) There exists an element 1 ∈ R, 1 6= 0,

such that 1 · a = a · 1 = a.
existence of a unit (neutral) element for ·

(M4) For every a ∈ R, a 6= 0 there exists an
element denoted 1

a
such that 1

a
· a = a · 1

a
= 1

existence of a multiplicative inverse
(reciprocal element) for ·

(D) For all a, b, c ∈ R,
a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c

distributivity of · over +

Note. In abstract algebra, these properties state that (R,+, ·) is a field.

Theorem 2.1.2. (Uniqueness of 0, 1)

a) If z, a ∈ R such that z + a = a, then z = 0.

b) If u, b ∈ R, b 6= 0 such that u · b = b, then u = 1.

c) For all a ∈ R, a · 0 = 0.
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Proof.

Theorem 2.1.3. (Uniqueness of opposites and reciprocals, zero product property)

a) If b ∈ R such that a+ b = 0, then b = −a.
If b ∈ R such that a · b = 1, then b = 1

a
.

b) If a · b = 0, then a = 0 or b = 0.

Proof.

Note. If we do not stipulate 1 6= 0, there is only one element in R.

Note. If 0 is allowed to have a reciprocal, then 0 = 1.

We define

a0 = 1 an =

n times︷ ︸︸ ︷
a · a · · · · · a a

b
= a · 1

b
a−n =

1

a

n

Using algebraic properties of R, it can be shown that all the algebraic rules for working with
real numbers are valid. As usual, we omit the multiplication symbol · where not needed.

For any n ∈ N we define the element n ∈ R as

n =

n terms︷ ︸︸ ︷
1 + 1 + · · ·+ 1

Then we can consider sets N′, Z′ and Q′ defined as

N′ = {1 + · · ·+ 1︸ ︷︷ ︸
n terms

| n ∈ N} Z′ = N′∪{0}∪{−n | n ∈ N′} Q′ =
{a

b
| a ∈ Z′, b ∈ Z′, b 6= 0

}
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Later order properties imply that the map N → R given by n 7→ 1 + · · · + 1 is injective,
which gives rise to maps Z → R and Q → R, also injective. The images of those maps are
N′, Z′ and Q′, so we think of N, Z and Q of being subsets of R through their stand-ins N′,
Z′ and Q′. We refer to elements of N′, Z′ and Q′ as natural numbers, integers and rational
numbers (special numbers in R) and stop writing the primes.

Among elements of N, we distinguish even and odd numbers, of forms 2n and 2n − 1 for
some natural number n. These have the usual properties that every natural number is even
or odd, that none is both, and that for every n ∈ N, n2 is even if and only if n is even.

Theorem 2.1.4. There is no rational number r such that r2 = 2.

Proof.

Note. The theorem does not say anything about the existence of such a real number r.

Order Properties of R 2.1.5. There is a nonempty subset P ⊆ R that satisfies the
following properties:

(i) If a, b ∈ P, then a+ b ∈ P

(ii) If a, b ∈ P, then a · b ∈ P

(iii) For every a ∈ R, exactly one of the
following holds: a ∈ P, a = 0 or −a ∈ P.

trichotomy property

Note that by (iii), the set R is broken up into three disjoint sets:

P, called positive real numbers {0} −P = {−a | a ∈ P}, called negative real numbers
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Definition 2.1.6. Let a, b ∈ R.

a) We write a > b or b < a if a− b ∈ P

b) We write a ≥ b or b ≤ a if a− b ∈ P ∪ {0}

The trichotomy property then implies that exactly one of the following holds:

a < b a = b a > b

Theorem 2.1.7. (properties of inequalities) Let a, b, c ∈ R.

a) If a > b and b > c, then a > c.

b) If a > b, then a+ c > b+ c.

c) If a > b and c > 0, then ac > ab. If a > b and c < 0, then ac < bc.

Proof.

Note. Theorem 2.1.7 and Order Properties 2.1.5 are equivalent. We could have started
with a relation < that satisfies the trichotomy property and conditions of Theorem 2.1.7 and
arrived at the set P. After this section, we will mostly forget the set P and simply work
with properties of inequalities, as we are used to.

Theorem 2.1.8.

a) If a 6= 0, then a2 > 0.

b) 1 > 0

c) If n ∈ N, then n > 0.

Proof.
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Note. There does not exist a smallest positive number.

Theorem 2.1.9. If a ∈ R is such that 0 ≤ a < ε for every ε > 0, then a = 0.

Proof.

Theorem 2.1.10. Let a, b ∈ R.

a) If ab > 0, then a > 0 and b > 0, or a < 0 and b < 0.

b) If ab < 0 then a > 0 and b < 0 or a < 0 and b > 0.

Proof.

Example. Bernoulli’s inequality. Let x ∈ R and n ∈ N, then

(1 + x)n ≥ 1 + nx for x ≥ −1.
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Definition 2.2.1. |a| =


a, if a > 0
0, if a = 0
−a, if a < 0

Note. Due to trichotomy, |a| > 0.

Theorem 2.2.2.

a) |ab| = |a||b|
b) |a|2 = a2

c) For a c ≥ 0, |a| ≤ c if and only if −c ≤ a ≤ c.

d) −|a| ≤ a ≤ |a|.

Proof.

Triangle Inequality 2.2.3. For all a, b ∈ R, |a+ b| ≤ |a|+ |b|.

Proof.
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Corollary 2.2.4.

a) ||a| − |b|| ≤ |a− b|
b) |a− b| ≤ |a|+ |b|

Proof.

Note. On the real line, |a− b| = distance from a to b.

Definition 2.2.7. For an a ∈ R and ε > 0 we define the ε-neighborhood of a as

Vε(a) = {x ∈ R | |x− a| < ε}

Theorem 2.2.8. For an a ∈ R, if x ∈ Vε(a) for every ε > 0, then x = a.

Proof.

Example. If x, y are in ε-neighborhoods of a, b, respectively, in what neighborhood of a+ b
is x+ y? What statement on accuracy can you make from this fact?
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2.3 The Completeness

Property of R

Example. Do the following subsets of R have a maximal element?

{1, 3, 7, 10} [−1, 3] [−1, 3) [−1,∞)

For S = [−1, 3), even though 3 is not a maximal element, it has a special property:

1) It is bigger than any element of S.

b) It is the “most efficient” such number.

This is the idea behind the supremum of a set.

Definition 2.3.1. Let S be a nonempty subset of R.

a) S is bounded above it there exists a u ∈ R such that s ≤ u for all s ∈ S.
Every such number u is called an upper bound of S.

b) S is bounded below it there exists a w ∈ R such that w ≤ s for all s ∈ S.
Every such number w is called a lower bound of S.

c) S is bounded if it is bounded above and below. A set is unbounded if it is not bounded.

Example. For each of the following subsets of R determine if they are bounded above or
below, or bounded. If they are, list some upper or lower bounds.

[−1,∞) [−1, 3) (−∞, 4] N

Note. If a set has one upper (lower) bound, it has many.
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Definition 2.3.2. Let S be a nonempty subset of R.
If S is bounded above, a number u is called a supremum of S (or least upper bound of S),
denoted supS, if

1) u is an upper bound of S.

2) If v is any upper bound of S, then u ≤ v.

If S is bounded below, a number w is called an infimum of S (or greatest lower bound of S),
denoted inf S, if

1) w is a lower bound of S.

2) If t is any lower bound of S, then t ≤ w.

Note. A supremum or infimum of a set is unique.

Example. For each of the following subsets of R, informally determine its supremum.

sup[−1,∞) = sup[−1, 3) = sup[−1, 3] =

Lemma 2.3.3. For a nonempty subset S of R, u = supS if and only if

1) u is an upper bound of S (i.e. s ≤ u for all s ∈ S).

2) If v < u, then there exists an s′ ∈ S such that v < s′.

Proof.
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Example. Show that sup[−1, 3) = 3.

Lemma 2.3.4. For a nonempty subset S of R, u = supS if and only if

1) u is an upper bound of S.

2) For every ε > 0, there exists an sε ∈ S such that u− ε < sε.

Proof. This is a rewording of Lemma 2.3.3.

We have seen so far that many sets, for example, Q or its extensions by roots, satisfy the
algebraic and order axioms listed. Now we add the axiom that uniquely determines the
set R.

The Completeness Property of R 2.3.6. Every nonempty set of real numbers that has
an upper bound also has a supremum in R.

Note. The set of rational numbers Q does not have this property. For example, the set
{q ∈ Q | q2 < 2} does not have a supremum in the set Q.
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2.4 Applications of the

Supremum Property

Example. Let S ⊆ R be bounded above and a ∈ R and let a+ S stand for {a+ s | s ∈ S}
Then sup(a+ S) = a+ supS.

Definition 2.4.2. Let f : D → R be a function. We say f is bounded above (below) if the
set f(D) is bounded above (below). We say f is bounded if it is bounded above and below,
which is equivalent to there being an M ∈ R such that |f(x)| ≤ M for all x ∈ D. We define
sup
x∈D

f(x) to be sup f(D).

Example. Show that, if f(x) ≤ g(x) for all x ∈ D, then sup
x∈D

f(x) ≤ sup
x∈D

g(x).

Theorem 2.4.7. There exists a positive real number x such that x2 = 2.

Proof.
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Archimedean Property (N is not bounded above) 2.4.3. For every x ∈ R there exists
a number nx ∈ N such that x ≤ nx.

Proof.

Corollary 2.4.5. If t > 0, there exists an nt ∈ N such that
1

nt

< t.
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Corollary 2.4.4. inf

{
1

n
| n ∈ N

}
= 0

Corollary 2.4.6. For every y > 0, there exists an ny ∈ N such that ny − 1 ≤ y < ny.

Density of Q 2.4.8. Let x, y ∈ R with x < y. Then there exists an r ∈ Q such that
x < r < y.

Proof.

Density of Irrationals 2.4.9. Let x, y ∈ R with x < y. Then there exists an irrational
number z such that x < z < y.

Note. The proof of existence of x such that x2 = 2 can be used to show that Q does not
have the completeness property. In the proof, by making ε = 1

n
, we can work only with

rational numbers. The assumption that x = supS exists in Q leads to the same conclusion
that x2 = 2, contradicting the fact that there is no such rational x.

Ch.2-13


