Advanced Calculus 1 — Lecture notes MAT 525/625, Fall 2023 — D. Ivanšić

Counting the number of elements in a set is essentially establishing a bijection between the elements in a set and a subset of natural numbers.

Definition 1.3.1. Let S be a set.

- a) The empty set \emptyset is said to have 0 elements.
- b) S is said to have n elements $(n \in \mathbf{N})$ if there is a bijection between the set $\mathbf{N}_n = \{1, 2, ..., n\}$ and S.
- c) S is said to be *finite* if it is empty or has n elements for some $n \in \mathbf{N}$.
- d) S is said to be *infinite* if it is not finite.

Theorem 1.3.2. If S is a finite set, then its number of elements is a unique number in N.

Theorem B.1. Let $m, n \in \mathbf{N}, m > n$. There is no injection $f : \mathbf{N}_m \to \mathbf{N}_n$.

Proof of Theorem 1.3.2.

Theorem 1.3.3. N is an infinite set.

Proof.

Theorem 1.3.4.

- a) If A has m elements, B has n elements and $A \cap B = \emptyset$, then $A \cup B$ has m + n elements.
- b) If A has m elements and $C \subseteq A$ has 1 element, then $A \setminus C$ has m 1 elements.
- c) If C is infinite and $B \subseteq C$ is finite, then $C \setminus B$ is infinite.

Proof of a).

Theorem 1.3.5. Let S and T be sets, and let $T \subseteq S$.

- a) If S is finite, so is T.
- b) If T is infinite, so is S.

Proof.

Definition 1.3.6. Let S be a set.

- a) We say S is *denumerable* if there exists a bijection $\mathbf{N} \to S$.
- b) We say S is *countable* if S is either finite or denumerable.
- c) We say S is *uncountable* if it is not countable.

Example. The sets $E, O \subseteq \mathbf{N}$ of even and odd numbers are denumerable.

Example. The set Z is denumerable. Note that a bijection with N can be described by listing the elements of the set in a sequence.

Example. The union of two disjoint denumerable sets is denumerable.

Theorem 1.3.8. The set $\mathbf{N} \times \mathbf{N}$ is denumerable.

Proof.

Theorem 1.3.9. Let S and T be sets, and let $T \subseteq S$.

a) If S is countable, so is T.

b) If T is uncountable, so is S.

Theorem 1.3.10. The following are equivalent.

- a) S is countable.
- b) There exists a surjection $\mathbf{N} \to S$.
- c) There exists an injection $S \to \mathbf{N}$.

Theorem 1.3.11. Q is denumerable.

Proof.

Theorem 1.3.12. If A_m is a countable set for each $m \in \mathbb{N}$, then $\bigcup_{m=1}^{\infty} A_m$ is countable.

Proof.

Cantor's Theorem 1.3.13. For any set A, there is no surjection $A \to \mathcal{P}(A)$, where $\mathcal{P}(A)$ is the set of all subsets of A.

Note. Cantor's Theorem means that $\mathcal{P}(\mathbf{N})$ is not denumerable, since there is no surjection $N \to \mathcal{P}(\mathbf{N})$. Therefore, $\mathcal{P}(\mathbf{N})$ is uncountable.

Example. Show that the set $S = \{A \subseteq \mathbf{N} \mid A \text{ is infinite}\}$ of all infinite subsets of \mathbf{N} is uncountable.