Advanced Calculus 1 - Lecture notes
MAT 525/625, Fall 2023 - D. Ivanšić

1.3 Finite and Infinite Sets

Counting the number of elements in a set is essentially establishing a bijection between the elements in a set and a subset of natural numbers.

Definition 1.3.1. Let S be a set.
a) The empty set \emptyset is said to have 0 elements.
b) S is said to have n elements $(n \in \mathbf{N})$ if there is a bijection between the set $\mathbf{N}_{n}=\{1,2, \ldots, n\}$ and S.
c) S is said to be finite if it is empty or has n elements for some $n \in \mathbf{N}$.
d) S is said to be infinite if it is not finite.

Theorem 1.3.2. If S is a finite set, then its number of elements is a unique number in \mathbf{N}.

Theorem B.1. Let $m, n \in \mathbf{N}, m>n$. There is no injection $f: \mathbf{N}_{m} \rightarrow \mathbf{N}_{n}$. Proof.

Theorem 1.3.3. N is an infinite set.
Proof.

Theorem 1.3.4.
a) If A has m elements, B has n elements and $A \cap B=\emptyset$, then $A \cup B$ has $m+n$ elements.
b) If A has m elements and $C \subseteq A$ has 1 element, then $A \backslash C$ has $m-1$ elements.
c) If C is infinite and $B \subseteq C$ is finite, then $C \backslash B$ is infinite.

Proof of a).

Theorem 1.3.5. Let S and T be sets, and let $T \subseteq S$.
a) If S is finite, so is T.
b) If T is infinite, so is S.

Proof.

Definition 1.3.6. Let S be a set.
a) We say S is denumerable if there exists a bijection $\mathbf{N} \rightarrow S$.
b) We say S is countable if S is either finite or denumerable.
c) We say S is uncountable if it is not countable.

Example. The sets $E, O \subseteq \mathbf{N}$ of even and odd numbers are denumerable.

Example. The set \mathbf{Z} is denumerable. Note that a bijection with \mathbf{N} can be described by listing the elements of the set in a sequence.

Example. The union of two disjoint denumerable sets is denumerable.

Theorem 1.3.8. The set $\mathbf{N} \times \mathbf{N}$ is denumerable.
Proof.

Theorem 1.3.9. Let S and T be sets, and let $T \subseteq S$.
a) If S is countable, so is T.
b) If T is uncountable, so is S.

Proof.

Theorem 1.3.10. The following are equivalent.
a) S is countable.
b) There exists a surjection $\mathbf{N} \rightarrow S$.
c) There exists an injection $S \rightarrow \mathbf{N}$.

Proof.

Theorem 1.3.11. Q is denumerable.
Proof.

Theorem 1.3.12. If A_{m} is a countable set for each $m \in \mathbf{N}$, then $\bigcup_{m=1}^{\infty} A_{m}$ is countable. Proof.

Cantor's Theorem 1.3.13. For any set A, there is no surjection $A \rightarrow \mathcal{P}(A)$, where $\mathcal{P}(A)$ is the set of all subsets of A.

Proof.

Note. Cantor's Theorem means that $\mathcal{P}(\mathbf{N})$ is not denumerable, since there is no surjection $N \rightarrow \mathcal{P}(\mathbf{N})$. Therefore, $\mathcal{P}(\mathbf{N})$ is uncountable.

Example. Show that the set $S=\{A \subseteq \mathbf{N} \mid A$ is infinite $\}$ of all infinite subsets of \mathbf{N} is uncountable.

