Calculus 1 — Exam 5Name:MAT 250, Fall 2022 — D. IvanšićShow all your work!

Find the following antiderivatives or definite integrals.

$$1. (3 \text{pts}) \quad \int \sqrt[5]{x^2} \, dx =$$

2. (3pts)
$$\int \cos\left(3x + \frac{\pi}{2}\right) dx =$$

3. (6pts)
$$\int \sqrt{t}(t^2 - 3t) dt =$$

4. (4pts)
$$\int_{1}^{e} \frac{1}{x} dx =$$

5. (7pts)
$$\int_0^{\frac{\pi}{6}} \frac{1 + \cos^2 \theta}{\cos^2 \theta} d\theta =$$

6. (6pts) Find
$$f(x)$$
 if $f'(x) = \frac{4}{\sqrt{1-x^2}}$ and $f\left(\frac{1}{2}\right) = 3$.

7. (15pts) The function $f(x) = 4 - x^2$ is given on the interval [0,3].

a) Write the Riemann sum M_6 for this function with six subintervals, taking sample points to be midpoints. Do not evaluate the expression.

b) Illustrate with a diagram, where appropriate rectangles are clearly visible. What does M_6 represent?

- 8. (13pts) Find $\int_0^3 x 1 \, dx$ in two ways (they'd better give you the same answer!): a) Using the "area" interpretation of the integral. Draw a picture.
- b) Using the Evaluation Theorem.

9. (10pts) The graph of a function f, consisting of lines and parts of circles, is shown. Evaluate the integrals.

$$\int_0^2 f(x) \, dx =$$
$$\int_2^7 f(x) \, dx =$$

 $\int_0^7 f(x) \, dx =$

10. (8pts) Pictured is the graph of f(x). Sketch the graph of the antiderivative F(x) of f(x), if it is known that F(-4) = 0. Relevant points have been highlighted.

11. (7pts) Use the inequality $m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$, where $m \leq f(x) \leq M$ on [a,b], to give an estimate of $\int_{-4}^{-2} f(x) dx$, where f is the function pictured in the preceding problem.

12. (6pts) Write using sigma notation:

$$\frac{2}{x^4} + \frac{3}{x^6} + \frac{4}{x^8} + \dots + \frac{9}{x^{18}} =$$

13. (12pts) Toxic sludge is being deposited into a collection pool at rate $6\sqrt{t} + 3t$ cubic meters per hour.

a) Use the Net Change Theorem to find how much sludge was added from t = 0 to t = 4 hours.

b) If at time t = 0 there were 12 cubic meters of sludge in the pool, how much is there at t = 4 hours?

Bonus. (10pts) Recall that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$. Use this formula to evaluate the sum below. (Note that it does not start with 1, how do you handle this?)

$$\sum_{i=4}^{n} (7+2i)$$