Calculus 1 - Exam 5

Name: \qquad
Find the following antiderivatives or definite integrals.

1. $(3 \mathrm{pts}) \int \sqrt[5]{x^{2}} d x=$
2. (3pts) $\int \cos \left(3 x+\frac{\pi}{2}\right) d x=$
3. $(6 \mathrm{pts}) \int \sqrt{t}\left(t^{2}-3 t\right) d t=$
4. $(4 \mathrm{pts}) \int_{1}^{e} \frac{1}{x} d x=$
5. (7pts) $\int_{0}^{\frac{\pi}{6}} \frac{1+\cos ^{2} \theta}{\cos ^{2} \theta} d \theta=$
6. (6pts) Find $f(x)$ if $f^{\prime}(x)=\frac{4}{\sqrt{1-x^{2}}}$ and $f\left(\frac{1}{2}\right)=3$.
7. (15pts) The function $f(x)=4-x^{2}$ is given on the interval $[0,3]$.
a) Write the Riemann sum M_{6} for this function with six subintervals, taking sample points to be midpoints. Do not evaluate the expression.
b) Illustrate with a diagram, where appropriate rectangles are clearly visible. What does M_{6} represent?
8. (13pts) Find $\int_{0}^{3} x-1 d x$ in two ways (they'd better give you the same answer!):
a) Using the "area" interpretation of the integral. Draw a picture.
b) Using the Evaluation Theorem.
9. (10pts) The graph of a function f, consisting of lines and parts of circles, is shown. Evaluate the integrals.

$$
\begin{aligned}
& \int_{0}^{2} f(x) d x= \\
& \int_{2}^{7} f(x) d x= \\
& \int_{0}^{7} f(x) d x=
\end{aligned}
$$

10. (8pts) Pictured is the graph of $f(x)$. Sketch the graph of the antiderivative $F(x)$ of $f(x)$, if it is known that $F(-4)=0$. Relevant points have been highlighted.

11. (7pts) Use the inequality $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$, where $m \leq f(x) \leq M$ on $[a, b]$, to give an estimate of $\int_{-4}^{-2} f(x) d x$, where f is the function pictured in the preceding problem.
12. (6pts) Write using sigma notation:
$\frac{2}{x^{4}}+\frac{3}{x^{6}}+\frac{4}{x^{8}}+\cdots+\frac{9}{x^{18}}=$
13. (12pts) Toxic sludge is being deposited into a collection pool at rate $6 \sqrt{t}+3 t$ cubic meters per hour.
a) Use the Net Change Theorem to find how much sludge was added from $t=0$ to $t=4$ hours.
b) If at time $t=0$ there were 12 cubic meters of sludge in the pool, how much is there at $t=4$ hours?

Bonus. (10pts) Recall that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$. Use this formula to evaluate the sum below. (Note that it does not start with 1, how do you handle this?)
$\sum_{i=4}^{n}(7+2 i)$

