Calculus 1 — Exam 3 MAT 250, Fall 2022 — D. Ivanšić

Name:

Show all your work!

Differentiate and simplify where appropriate:

1. (5pts)
$$\frac{d}{dx}e^{x^2-x+3} =$$

2. (6pts)
$$\frac{d}{dx}\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)e^x =$$

3. (6pts)
$$\frac{d}{dt} \frac{\arctan t}{t^2} =$$

4. (7pts)
$$\frac{d}{dx} \ln\left(\frac{x+2}{x-2}\right)^3$$

5. (7pts)
$$\frac{d}{d\theta} \ln(\sec\theta + \tan\theta) =$$

6. (9pts) Use logarithmic differentiation to find the derivative of $y = (\sin x)^{\cos x}$.

Find the limits algebraically. Graphs of basic functions will help, as will L'Hospital's rule, where appropriate.

7. (2pts)
$$\lim_{x \to -\infty} e^{3x} =$$

8. (7pts)
$$\lim_{x \to \infty} \arctan\left(\frac{x^2 + 5x + 1}{x + 7}\right) =$$

9. (6pts)
$$\lim_{x \to \infty} \frac{x^2}{2^x} =$$

10. (9pts)
$$\lim_{x \to 0} \frac{\tan x - x}{x^3} =$$

11. (8pts)
$$\lim_{x \to 0^+} x^x =$$

12. (12pts) Let $f(x) = \ln x$.

a) Write the linearization of f(x) at a = 1.

b) Use the linearization to estimate $\ln 1.2$.

c) In the same coordinate system, draw rough graphs of the function and the linearization and determine if the estimate overshoots or undershoots $\ln 1.2$.

13. (9pts) In a right triangle, the hypothenuse is known to be 5 inches. One of the angles is measured to be $\frac{\pi}{6}$ radians, with maximum error 0.1 radians. Use differentials to estimate the maximum possible error and relative error when computing the length of the side adjacent to the angle.

14. (7pts) Let $f(x) = x^3 - x$. Use the theorem on derivatives of inverses to find $(f^{-1})'(6)$.

Bonus. (10pts) Let $f(x) = x^n$, $x \ge 0$, where *n* is a positive integer. We have justified the rule for the derivative of *f* using the definition by computing a limit. Use the derivative of *f* and either the theorem on derivatives of inverses, or implicit differentiation, to justify the rule for the derivative of $\sqrt[n]{x}$.