Calculus 1 - Exam 3

MAT 250, Fall 2022 - D. Ivanšić

Name: \qquad

Differentiate and simplify where appropriate:

1. (5pts) $\frac{d}{d x} e^{x^{2}-x+3}=$
2. $(6 \mathrm{pts}) \frac{d}{d x}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right) e^{x}=$
3. $(6 \mathrm{pts}) \frac{d}{d t} \frac{\arctan t}{t^{2}}=$
4. $(7 \mathrm{pts}) \frac{d}{d x} \ln \left(\frac{x+2}{x-2}\right)^{3}$
5. $(7 \mathrm{pts}) \frac{d}{d \theta} \ln (\sec \theta+\tan \theta)=$
6. (9pts) Use logarithmic differentiation to find the derivative of $y=(\sin x)^{\cos x}$.

Find the limits algebraically. Graphs of basic functions will help, as will L'Hospital's rule, where appropriate.
7. $(2 \mathrm{pts}) \lim _{x \rightarrow-\infty} e^{3 x}=$
8. $(7 \mathrm{pts}) \lim _{x \rightarrow \infty} \arctan \left(\frac{x^{2}+5 x+1}{x+7}\right)=$
9. (6pts) $\lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}}=$
10. $(9 \mathrm{pts}) \lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}=$
11. (8pts) $\lim _{x \rightarrow 0+} x^{x}=$
12. (12pts) Let $f(x)=\ln x$.
a) Write the linearization of $f(x)$ at $a=1$.
b) Use the linearization to estimate $\ln 1.2$.
c) In the same coordinate system, draw rough graphs of the function and the linearization and determine if the estimate overshoots or undershoots $\ln 1.2$.
13. (9pts) In a right triangle, the hypothenuse is known to be 5 inches. One of the angles is measured to be $\frac{\pi}{6}$ radians, with maximum error 0.1 radians. Use differentials to estimate the maximum possible error and relative error when computing the length of the side adjacent to the angle.
14. (7pts) Let $f(x)=x^{3}-x$. Use the theorem on derivatives of inverses to find $\left(f^{-1}\right)^{\prime}(6)$.

Bonus. (10pts) Let $f(x)=x^{n}, x \geq 0$, where n is a positive integer. We have justified the rule for the derivative of f using the definition by computing a limit. Use the derivative of f and either the theorem on derivatives of inverses, or implicit differentiation, to justify the rule for the derivative of $\sqrt[n]{x}$.

