College Algebra — Joysheet 10 MAT 140, Fall 2023 — D. Ivanšić

Name: Saul Ogan

Covers: 5.1-5.3

Show all your work!

1. (6pts) The graph of a function f is given.

- a) Is this function one-to-one? Justify.
- b) If the function is one-to-one, find the graph of f^{-1} , labeling the relevant points.

2. (12pts) Let $f(x) = \frac{3x-1}{x+4}$. Find the formula for f^{-1} . Find the ranges of f and f^{-1} .

$$5 = \frac{3x-1}{x+4}$$

$$5(x+4) = 3x-1$$

$$5x+4y=3x-1$$

$$5x-3x=-1-4y$$

$$x = \frac{-1-4y}{5-3} = \frac{1+4y}{3-5} = f'(y)$$

Rouge
$$f = Domain f^{\dagger}$$
 con't have $3-y=0$

$$y=3$$

$$f'(y) = \frac{1+4y}{3-y} \qquad (-\infty, 3) \cup (3,\infty)$$
Rouge $f = Domain f$ can't have $x+q=0$

$$x=-4$$

$$(-\infty, -4) \cup (-4,\infty)$$

3. (8pts) Evaluate without using the calculator. For each problem, write the question you should ask yourself in order to find the logarithms.

$$\log_6 36 = 2 \qquad \log_3 \frac{1}{81} = -4$$

$$6 = 36 \qquad 3^2 = \frac{1}{81} = \frac{1}{34} = 3^2$$

$$\log_3 \frac{1}{81} = -4 \qquad \log_8 2 = \frac{1}{3} \qquad \log_{\sqrt{a}} a^3 = 6$$

$$3 = \frac{1}{81} = \frac{1}{3^4} = 3^4 \qquad 8 = 2 = \sqrt[3]{8} = 8^{\frac{1}{3}} \qquad (\sqrt{a})^2 = a^3 = (a^{\frac{1}{2}})^6 = (\sqrt{a})^6$$

4. (4pts) Use the change-of-base formula and your calculator to find log₄ 5 with accuracy 6 decimal places. Show how you obtained your number.

- 5. (12pts) Investigate the effect of increased frequency of compounding: for a deposit of \$3,000 and annual interest rate of 4.74%, calculate the amount in the account after 1 year for the frequencies of compounding below.
- a) Write the general formula for the amount, replacing the variables by numbers, if known.
- b) Use the table feature on your calculator to quickly compute amounts after 1 year.
- c) Does compounding more often make a big difference?

Frequency: every	n	Amount after 1 year	1 - 2000 (14 0,04/4)
year		3142.20	A=3000 (1+ 6,0474)
b) quarter	- 4	3144.75	= 3000 (1+ 0.0474)"
month	n	3145.33	2)0.0(n
day	365	3145, 61	c) Initially it makes a
hour	365.24 = 8760	3145.62	little difference, later,
second	365-24-3600=31,536,000	3113,00	not very much.

6. (3pts) Find the domain of $f(x) = \ln(4x - 11)$.

- 7. (8pts) The cost per person of a field trip for x students is given by $C(x) = \frac{150 + 8x}{x}$, where C is in dollars.
- a) Find the cost per person if 10 or 20 students go.
- b) Find a formula for the inverse function and explain what it represents.
- c) How many students need to go so that cost per person is \$23? \$13?

a)
$$C(10) = \frac{150 + 80}{10} = 23$$
b) $C = \frac{150 + 8x}{x}$
c) $\frac{150}{23 - 8} = \frac{150}{15} = 10$

$$C(20) = \frac{150 + 160}{20} = 15,50$$

$$C = \frac{150 + 8x}{x}$$
c) $\frac{150}{23 - 8} = \frac{150}{15} = 10$

$$C = \frac{150 + 8x}{x}$$
c) $\frac{150}{23 - 8} = \frac{150}{15} = 10$

$$C = \frac{150 + 8x}{x}$$
c) $\frac{150}{23 - 8} = \frac{150}{15} = 10$

$$C = \frac{150 + 8x}{x}$$
c) $\frac{150}{23 - 8} = \frac{150}{15} = 10$

$$C = \frac{150 + 8x}{x}$$
c) $\frac{150}{23 - 8} = \frac{150}{15} = 10$

$$C = \frac{150 + 8x}{x}$$
c) $\frac{150}{13 - 8} = \frac{150}{15} = 10$

$$C = \frac{150 + 8x}{x}$$
c) $\frac{150}{13 - 8} = \frac{150}{15} = 10$

$$C = \frac{150 + 8x}{x}$$
c) $\frac{150}{13 - 8} = \frac{150}{15} = 10$

$$C = \frac{150 + 8x}{x}$$
c) $\frac{150}{13 - 8} = \frac{150}{15} = 10$

$$C = \frac{150 + 8x}{x}$$
c) $\frac{150}{13 - 8} = \frac{150}{15} = 10$

$$C = \frac{150 + 8x}{x}$$
c) $\frac{150}{13 - 8} = \frac{150}{15} = 10$

$$C = \frac{150 + 8x}{x}$$
c) $\frac{150}{13 - 8} = \frac{150}{13 - 8} = \frac{150}{13 - 8}$
c) $\frac{150}{13 - 8} = \frac{150}{13 - 8} = \frac{150}{13 - 8}$
c) $\frac{150}{13 - 8} = \frac{150}{13 - 8} = \frac{150}{13 - 8}$
c) $\frac{150}{13 - 8} = \frac{150}{13 - 8} = \frac{150}{13 - 8}$
c) $\frac{150}{13 - 8} = \frac{150}{13 - 8} = \frac{150}{13 - 8}$
c) $\frac{150}{13 - 8} = \frac{150}{13 - 8} = \frac{150}{13 - 8}$
c) $\frac{150}{13 - 8} = \frac{150}{13 - 8} = \frac{150}{13 - 8}$
c) $\frac{150}{13 - 8} = \frac{150}{13 - 8} = \frac{150}{13 - 8}$
c) $\frac{150}{13 - 8} = \frac{150}{13 - 8} = \frac{150}{13 - 8}$
c) $\frac{150}{13 - 8} = \frac{150}{13 - 8} = \frac{150}{13 - 8}$
c) $\frac{150}{13 - 8} = \frac{150}{13 - 8} = \frac{150}{13 - 8}$
c) $\frac{150}{13 - 8} =$

8. (7pts) Using transformations, draw the graph of $f(x) = -e^{x+4}$. Explain how you transform the graph of a basic function in order to get the graph of f. Show at least one point on the graph, and asymptotes to the graph, if any.

