Introduction to Topology — Handout MAT 516/616, Spring 2022 — D. Ivanšić

Test Knowledge

Sections 2.1–2.5, 8.1

Definitions Open set in \mathbf{R} (2.1.1)

Topological space (2.2.1)

Topological spaces $(\mathbf{R}, \mathcal{U}), (\mathbf{R}, \mathcal{H}), (\mathbf{R}, \mathcal{C})$

Discrete (2.2.4), indiscrete (2.2.5) topologies

Particular point (2.2.6), finite complement (2.2.8) topologies

Continuous function (2.2.13)

Closed set (2.3.1), closure of a set Cl A (2.3.10)

Dense set (2.3.19)

Limit point, set of limit points A' (2.4.1)

Interior Int A (2.4.11), exterior Ext A (2.4.17), boundary Bd A (2.4.20)

Base for a topology (2.5.1)

Metric (8.1.1)

The discrete metric (8.1.3), the three metrics on \mathbb{R}^n (8.1.4)

Open ball (8.1.5)

Metric topology (8.1.8)

Theorems Theorem 2.1.5

Theorems 2.3.7, 2.3.8, 2.3.15, 2.3.17

Theorems 2.4.7 & 2.4.9

Theorems 2.4.14, 2.4.21 and $(Cl A)^c = Int(A^c)$

Theorems 2.5.6 & 2.5.7 Theorems 8.1.7 & 8.1.9

Proofs Theorem 2.1.5

Theorem 2.5.6

Theorem 2.5.7

Theorem 8.1.7

Sections 3.1-3.4, 4.1, 4.2, 4.4

Definitions Relative topology (3.1.1)

Cl, Int, Bd in the relative topology Neighborhood of a point (3.2.2)

Open function (3.3.1)Homeomorphism (3.3.5)Topology on \mathbb{R}^n (3.4)

Product topology on two and finitely many sets (4.1.2, 4.2.2)

Theorems Theorem 3.1.7, 3.1.13

Theorem 3.1.8 Theorem 3.2.9

Theorems 3.2.13 & 3.2.14, problem 3.2.12

Theorems 3.3.6 & 3.3.7

Theorems 3.3.15, 3.3.16 and 3.3.17

Theorems 4.1.8 & 4.2.3 Theorems 4.1.9 & 4.1.11

Theorem 4.1.10 Lemmas 4.2.8 & 4.2.9

Theorems 4.2.11 & 4.2.13

Continuity of a, m, i_a, i_m in the usual topology

Proofs Theorem 4.1.9

Lemmas 4.2.8 & 4.2.9

Theorem 4.2.13

Continuity of a, m, i_a, i_m in the usual topology

Sections 5.1–5.3, 6.1, 6.2

Definitions Connected, disconnected space (5.1.1)

Upper, lower bound, least upper bound (supremum),

greatest lower bound (infimum) (5.1.7)

Fixed point of a function, fixed point property (5.2.14))

Cut point (5.2.18)

Cover, open cover of a set (6.1.1)

Compact space, subset (6.1.6)

Hausdorff space (6.1.14)

Bounded function (6.2.4)

Finite intersection property (6.2.14)

Theorems Completeness property of \mathbf{R} (5.1.8)

Theorem 5.1.11

Theorem 5.1.12

Theorem 5.2.1

Theorems 5.2.4, 5.2.6, 5.2.8, 5.2.9

Theorem 5.2.11

Theorems 5.2.15, 5.2.17, 5.2.22

Theorem on connectedness of a union of connected sets with a common point (notes)

Lemma 5.3.1

Theorems 5.3.3, 5.3.4

Theorem 6.1.12

Theorems 6.1.13, 6.1.19, 6.1.20, 6.1.21

Theorems 6.2.1, 6.2.2, 6.2.3

Theorems 6.2.5, 6.2.7

Theorems 6.2.11, 6.2.12

Theorem 6.2.16

Proofs Theorem 5.2.11

Theorem 5.2.17

Theorem 5.3.3

Theorem 6.1.21