Do all the theory problems. Then do at least five problems, one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Define a limit point of A.
Theory 2. (3pts) State the theorem that describes what open sets are in $(\mathbf{R}, \mathcal{U})$.
Theory 3. (3pts) Let d be a metric on a set X. Define the metric topology on X.

Type A problems (5pts Each)

A1. Let $X=\mathbf{N}$ (natural numbers) and $\mathcal{T}=\{U \subseteq \mathbf{N} \mid U=\emptyset$ or U contains at least one even number $\}$. Is \mathcal{T} a topology?

A2. Let $A=(0,2) \cup(4, \infty)$ be a subset of the topological space $(\mathbf{R}, \mathcal{C})$. Find $\operatorname{Bd} A$ and justify, possibly with pictures.

A3. Let $A=\left\{\left.(-1)^{n} \frac{1}{n} \right\rvert\, n \in \mathbf{N}\right\}$. Determine $\mathrm{Cl} A$ and justify, possibly with pictures.
A4. Let $f:(X, \mathcal{T}) \rightarrow(Y, \mathcal{S})$ be a continuous function between topological spaces and let $B \subseteq Y$. Show that $f^{-1}(\operatorname{Int} B) \subseteq \operatorname{Int} f^{-1}(B)$.

A5. Let $f:(\mathbf{R}, \mathcal{H}) \rightarrow(\mathbf{R}, \mathcal{U})$ be the function defined by $f(x)=x^{2}$. Show that f is continuous.

A6. Let $\mathcal{B}=\{U \subseteq \mathbf{R} \mid U=[0,1]$ or $U=[0,1] \cup(a, b)$, where $a, b \in \mathbf{R}$ and $a<b\}$. Show that \mathcal{B} is a base for a topology on \mathbf{R}. State, without proof, the open sets of this topology.

Type B problems (8pts Each)

B1. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the function given below. Determine whether f is
a) $\mathcal{U}-\mathcal{U}$ continuous \quad b) $\mathcal{U}-\mathcal{C}$ continuous

$$
f(x)= \begin{cases}x, & \text { if } x \geq 0 \\ x+1, & \text { if } x<0\end{cases}
$$

B2. Let $X=\{a, b, c\}, \mathcal{T}=\{\emptyset, X,\{a\},\{a, b\}\}, A=\{b, c\}$. Determine Int A, A^{\prime} and $\mathrm{Cl} A$ and justify.

B3. Consider the topological space $(\mathbf{R}, \mathcal{C})$. Show that $A \subseteq \mathbf{R}$ is dense in \mathbf{R} if and only if A is not bounded above.

B4. Let A, B be subsets of a topological space (X, \mathcal{T}). Show that $\mathrm{Cl}(A \cup B)=\mathrm{Cl} A \cup \mathrm{Cl} B$. (Hint: don't do anything complicated. Use properties of closure.)

B5. Show that the collection $\mathcal{B}=\{(a, b) \mid a, b \in \mathbf{R}, a$ rational and b irrational $\}$ is a base for $(\mathbf{R}, \mathcal{U})$.

B6. Show that the function d defined below is a metric on \mathbf{Z} (integers).
$d(m, n)= \begin{cases}0, & \text { if } m=n \\ |m|+|n| & \text { if } m \neq n\end{cases}$

Type C problems (12pts Each)

C1. Let $\mathcal{B}=\{[a, b) \mid a, b \in \mathbf{R}, a$ rational and b irrational $\}$.
a) Show that the collection \mathcal{B} is a base for a topology on \mathbf{R}.
b) Show \mathcal{B} is not a base for the topology \mathcal{H}.

C2. Let $\left\{A_{\alpha} \mid \alpha \in \Lambda\right\}$ be a collection of sets in a topological space X. Show that

$$
\bigcup_{\alpha \in \Lambda} \mathrm{Cl}\left(A_{\alpha}\right) \subseteq \mathrm{Cl}\left(\bigcup_{\alpha \in \Lambda} A_{\alpha}\right)
$$

Give an example where the two sets are not equal and justify.

Do all the theory problems. Then do at least five problems, one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Let $\left(X_{1}, \mathcal{T}_{1}\right), \ldots,\left(X_{n}, \mathcal{T}_{n}\right)$ be topological spaces. Define the product topology on $X_{1} \times \cdots \times X_{n}$.

Theory 2. (3pts) Define a homeomorphism.
Theory 3. (3pts) Let X be a topological space and $A \subset X$. State the theorem that gives a criterion for when a subset $B \subseteq A$ is closed in the relative topology.

Type A problems (5pts Each)

A1. Let $A=[-2,2]$ be a subspace of $(\mathbf{R}, \mathcal{U})$. Which of the subsets of A are open in the relative topology: $(-2,0),(0,2],(-1,1]$? Prove your answers.

A2. Let X be a topological space with base \mathcal{B}, and let $A \subseteq X$. Show that the collection $\mathcal{B}^{\prime}=\{B \cap A \mid B \in \mathcal{B}\}$ is a base for the relative topology on A.

A3. Let $X=\{a, b, c, d\}$ with the topology $\mathcal{T}=\{\emptyset,\{a\},\{a, c, d\},\{a, b, c, d\}\}$. Let $A=$ $\{a, b, c\}$. Find $\mathrm{Cl}\{c\}$ and $\mathrm{Cl}_{A}\{c\}$ and justify your answer.

A4. Let $f: X \rightarrow Y$ be a continuous function and $B \subseteq Y$. Show that $f^{-1}(\operatorname{Int} B) \subseteq$ Int $f^{-1}(B)$.

A5. Consider the product space $(\mathbf{R}, \mathcal{U}) \times(\mathbf{R}, \mathcal{C})$. Draw a subset of $\mathbf{R} \times \mathbf{R}$ that is open in the product topology but is not a base element. (Justify that it is open, but you do not have to justify that it is not a base element.)

A6. Group the subspaces of \mathbf{R}^{2} into groups of homeomorphic spaces. Show spaces from one pair of groups are not homeomorphic.

Type B problems (8pts Each)

B1. Give an example of an increasing function $f: \mathbf{R} \rightarrow \mathbf{R}$ that is not continuous as $f:(\mathbf{R}, \mathcal{U}) \rightarrow(\mathbf{R}, \mathcal{U})$ but is continuous as $f:(\mathbf{R}, \mathcal{C}) \rightarrow(\mathbf{R}, \mathcal{C})$. (Think simple.) Justify.

B2. Let X be a topological space and $A \subset X$. For any subset $C \subseteq A$, show that $\operatorname{Bd}_{A} C \subseteq A \cap \mathrm{Bd}_{X} C$.

B3. Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be continuous functions and let $g(x) \neq 0$ for all $x \in \mathbf{R}$. Show that the function $\frac{f}{g}$ is continuous using known theorems from chapter 4.

B4. Let $A \subseteq \mathbf{R}^{2}$ be the parabola $y=x^{2}$ with the relative topology. Show that A is homeomorphic to \mathbf{R}.

B5. Let \mathcal{D} be the discrete topology. Prove with pictures that the multiplication function

$$
m:(\mathbf{R}, \mathcal{U}) \times(\mathbf{R}, \mathcal{D}) \rightarrow(\mathbf{R}, \mathcal{U})
$$

is continuous. (Hint: what are basic open sets in $(\mathbf{R}, \mathcal{U}) \times(\mathbf{R}, \mathcal{D})$ like?)
B6. Let $X=\{0,1,2, \ldots\}$ and $Y=\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbf{N}\right\}$, and let X and Y have the subspace topologies coming from $(\mathbf{R}, \mathcal{U})$. Show that X is not homeomorphic to Y.

Type C problems (12pts Each)

C1. Let X and Y be topological spaces, $A \subseteq X, B \subseteq Y$. Show that

$$
\mathrm{Bd}(A \times B)=(\mathrm{Bd} A \times \mathrm{Cl} B) \cup(\mathrm{Cl} A \times \mathrm{Bd} B)
$$

Illustrate for $X, Y=\mathbf{R}, A=(2,4), B=(1,3)$. (Hint: you will not need to go into definitions, just use established properties.)
$\mathbf{C} 2$. Show that any polynomial in two variables $P: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ is continuous using known theorems from chapter 4. (An example of a polynomial in two variables is $P(x, y)=$ $x^{3}+6 x^{2} y-5 x y+y$.)

Introduction to Topology - Exam 3 MAT 516/616, Spring 2022 - D. Ivanšić

Do all the theory problems. Then do at least five problems, one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define when a topological space X is compact.
Theory 2. (3pts) Define a fixed point and the fixed point property.
Theory 3. (3pts) State the theorem about connectedness of $X \times Y$.

Type A problems (5pts each)

A1. Let $X=\{a, b, c, d\}$ with the topology $\mathcal{T}=\{\emptyset,\{a, b\},\{a, b, c\},\{a, b, c, d\}\}$, and let $A=\{b, c\}$. Is X connected? Is A connected? Prove your answers.

A2. Show that any subset of $(\mathbf{R}, \mathcal{C})$ is connected.
A3. True or false? Let $f: X \rightarrow Y$ be a continuous function. If $B \subseteq Y$ is connected, then $f^{-1}(B)$ is connected. Justify your answer.

A4. Let the natural numbers \mathbf{N} have the finite-complement topology $\mathcal{T}=\{U \subseteq \mathbf{N} \mid$ U^{c} is finite or $\left.U=\emptyset\right\}$. Is (\mathbf{N}, \mathcal{T}) Hausdorff?

A5. Show that $(1,4)$ is not a compact subset of $(\mathbf{R}, \mathcal{C})$.
A6. Give an example of a disconnected compact subset of $(\mathbf{R}, \mathcal{U})$ and justify why it is disconnected and compact.

Type B problems (8pts Each)

B1. Prove the generalized Intermediate Value Theorem: let X be a connected space, $f: X \rightarrow \mathbf{R}$ a continuous function and let $a, b \in X$. If N is any number between $f(a)$ and $f(b)$, then there exists a $c \in X$ such that $f(c)=N$.

B2. Let $A \subseteq \mathbf{R} \times \mathbf{R}$ be the set consisting of the graph of $f(x)=\frac{1}{x} \sin \frac{1}{x}$ for $x>0$ and the y-axis. Show that A is connected. (Use known theorems and properties of connectedness rather than the definition.)

B3. Let $f:(\mathbf{R}, \mathcal{H}) \rightarrow(\mathbf{R}, \mathcal{H})$ be a continuous function. Does the Intermediate Value Theorem hold in this case? Justify.

B4. Show that $[1,4]$ is not a compact subset of $(\mathbf{R}, \mathcal{H})$. (Hint: there is an infinite open cover consisting of disjoint base elements of \mathcal{H} that utilizes the point 3, for example.)

B5. Let X have the discrete topology. Construct and prove the statement: X is compact if and only if X is \qquad .

B6. Let X be a space with the finite-complement topology. Show that any subset $A \subseteq X$ is compact.

B7. Let Y be a Hausdorff space, and let $f: X \rightarrow Y$ be a continuous function, and let $X \times Y$ have the product topology. Define $G \subseteq X \times Y$ to be the "graph" of f :

$$
G=\{(x, f(x)) \in X \times Y \mid x \in X\} .
$$

Show that G is a closed subset of $X \times Y$.

Type C problems (12pts Each)

C1. Show that $(\mathbf{R} \times \mathbf{R})-(\mathbf{Q} \times \mathbf{Q})$ is path-connected (and hence connected). Pictures will suffice as an argument.

C2. Prove that a subset A of $(\mathbf{R}, \mathcal{C})$ is compact if and only if $\inf A \in A$. (Note that this means $\inf A$ is a real number.)

