Show all your work!

Do all the theory problems. Then do at least five problems, one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Define Cl A.

Theory 2. (3pts) Define the product topology.

Theory 3. (3pts) Define when a topological space X is compact.

Type A problems (5pts each)

A1. Let (X, \mathcal{T}) be a topological space. Show that a subset $A \subseteq X$ is dense if and only if for every open set $U, U \cap A \neq \emptyset$.

A2. Let X be any set with three elements or more and \mathcal{B} be the collection of all two-element subsets of X. Show that \mathcal{B} is not a base for any topology.

A3. Let X be a topological space and let $A \subset X$ be a closed set. Show that $F \subseteq A$ is closed in A if and only if F is closed in X.

A4. Let X be a topological space and define $f : X \times X \to X \times X$ as f(x, y) = (y, x). Show that f is a homeomorphism. What is its inverse?

A5. Show that any subset of $(\mathbf{R}, \mathcal{H})$ with at least two elements is disconnected.

A6. Show that (1, 4) is not a compact subset of $(\mathbf{R}, \mathcal{H})$.

A7. Show that $[3, \infty)$ is a compact subset of $(\mathbf{R}, \mathcal{C})$.

TYPE B PROBLEMS (8PTS EACH)

B1. Let $f : \mathbf{R} \to \mathbf{R}$ be the function given below. Determine whether f is a) \mathcal{U} - \mathcal{U} continuous b) \mathcal{C} - \mathcal{C} continuous

$$f(x) = \begin{cases} x, & \text{if } x > 0\\ x - 1, & \text{if } x \le 0. \end{cases}$$

B2. Show that the collection $\mathcal{B} = \{B_{\frac{1}{n}}(x) \mid x \in \mathbf{R}, n \in \mathbf{N}\}$ is a base for $(\mathbf{R}, \mathcal{U})$, where the balls are defined using the usual metric d(x, y) = |x - y|.

B3. Let X have the discrete topology. Show that the product topology on $X \times X$ is the discrete topology (i.e. every subset of $X \times X$ is open in the product topology).

B4. Let $A \subseteq \mathbf{R} \times \mathbf{R}$ be the set $A = ([0, 1) \times \mathbf{R}) \cup \{(1, n) \mid n \in \mathbf{Z}\}$. Is A connected? Prove your answer.

B5. Show that the punctured plane $\mathbf{R} \times \mathbf{R} - \{(0,0)\}$ is a connected space, with the topology relative to the usual product topology on $\mathbf{R} \times \mathbf{R}$. (Use known theorems and properties of connectedness rather than the definition.)

B6. Let X be a Hausdorff space, and let $X \times X$ have the product topology. Define $Z \subseteq X \times X$ to be the set $Z = \{(x, x) \in X \times X \mid x \in X\}$. Show that Z is a closed subset of $X \times X$.

TYPE C PROBLEMS (12PTS EACH)

C1. A collection \mathcal{T} of subsets of the set of natural numbers **N** is defined as follows: $U \in \mathcal{T}$ provided that for every $m \in U$, all the divisors of m are also in U, where 1 is considered a divisor.

For example: $\{1, 2, 3, 4, 6, 12\}, \{1, 2, 4, 8\}, \{1, 7\}, \{3^k \mid k \ge 0\}$ are in \mathcal{T} ; $\{2, 5, 10\}, \{14, 28\}, \{1, 5, 6, 30\}$ are not in \mathcal{T} .

a) Show that \mathcal{T} is a topology on **N**.

b) Find $\operatorname{Cl} A$, where $A = \{15\}$.

C2. Let $X = \mathbb{R}^2 - \{(0,0)\}$ and $Y = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 > 1\}$. Show that X and Y are homeomorphic. First sketch what the homeomorphism does, then write a formula for it and prove it is a homeomorphism.

C3. Let X be the square $[0,1] \times [0,1]$ with the usual product topology and $f: X \to \mathbf{R}$ a continuous function so that f(0,0) = -3 and f(1,1) = 2. Show that there is a point (c,d) in $(0,1) \times (0,1)$ (the "interior") such that f(c,d) = 0.

C4. Give an example of a compact subset of $(\mathbf{R}, \mathcal{U})$ that is not a closed interval. Then show: if $A \subseteq (\mathbf{R}, \mathcal{U})$ is a compact and connected subset, then A is a closed interval.