Introduction to Topology - Final Exam MAT 516/616 , Fall 2013 - D. Ivanšić

Name: Show all your work!

Do all the theory problems. Then do at least five problems, one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Define $\mathrm{Cl} A$.
Theory 2. (3pts) Define the product topology.
Theory 3. (3pts) Define when a topological space X is compact.

Type A problems (5pts Each)

A1. Let (X, \mathcal{T}) be a topological space. Show that a subset $A \subseteq X$ is dense if and only if for every open set $U, U \cap A \neq \emptyset$.

A2. Let X be any set with three elements or more and \mathcal{B} be the collection of all two-element subsets of X. Show that \mathcal{B} is not a base for any topology.

A3. Let X be a topological space and let $A \subset X$ be a closed set. Show that $F \subseteq A$ is closed in A if and only if F is closed in X.

A4. Let X be a topological space and define $f: X \times X \rightarrow X \times X$ as $f(x, y)=(y, x)$. Show that f is a homeomorphism. What is its inverse?

A5. Show that any subset of $(\mathbf{R}, \mathcal{H})$ with at least two elements is disconnected.
A6. Show that $(1,4)$ is not a compact subset of $(\mathbf{R}, \mathcal{H})$.
A7. Show that $[3, \infty)$ is a compact subset of $(\mathbf{R}, \mathcal{C})$.

Type B problems (8pts Each)

B1. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the function given below. Determine whether f is
a) $\mathcal{U}-\mathcal{U}$ continuous
b) $\mathcal{C}-\mathcal{C}$ continuous

$$
f(x)= \begin{cases}x, & \text { if } x>0 \\ x-1, & \text { if } x \leq 0\end{cases}
$$

B2. Show that the collection $\mathcal{B}=\left\{\left.B_{\frac{1}{n}}(x) \right\rvert\, x \in \mathbf{R}, n \in \mathbf{N}\right\}$ is a base for $(\mathbf{R}, \mathcal{U})$, where the balls are defined using the usual metric $d(x, y)=|x-y|$.

B3. Let X have the discrete topology. Show that the product topology on $X \times X$ is the discrete topology (i.e. every subset of $X \times X$ is open in the product topology).

B4. Let $A \subseteq \mathbf{R} \times \mathbf{R}$ be the set $A=([0,1) \times \mathbf{R}) \cup\{(1, n) \mid n \in \mathbf{Z}\}$. Is A connected? Prove your answer.

B5. Show that the punctured plane $\mathbf{R} \times \mathbf{R}-\{(0,0)\}$ is a connected space, with the topology relative to the usual product topology on $\mathbf{R} \times \mathbf{R}$. (Use known theorems and properties of connectedness rather than the definition.)

B6. Let X be a Hausdorff space, and let $X \times X$ have the product topology. Define $Z \subseteq X \times X$ to be the set $Z=\{(x, x) \in X \times X \mid x \in X\}$. Show that Z is a closed subset of $X \times X$.

Type C problems (12pts Each)

C1. A collection \mathcal{T} of subsets of the set of natural numbers \mathbf{N} is defined as follows: $U \in \mathcal{T}$ provided that for every $m \in U$, all the divisors of m are also in U, where 1 is considered a divisor.

For example: $\{1,2,3,4,6,12\},\{1,2,4,8\},\{1,7\},\left\{3^{k} \mid k \geq 0\right\}$ are in \mathcal{T};

$$
\{2,5,10\},\{14,28\},\{1,5,6,30\} \text { are not in } \overline{\mathcal{T}} .
$$

a) Show that \mathcal{T} is a topology on \mathbf{N}.
b) Find $\mathrm{Cl} A$, where $A=\{15\}$.

C2. Let $X=\mathbf{R}^{2}-\{(0,0)\}$ and $Y=\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}+y^{2}>1\right\}$. Show that X and Y are homeomorphic. First sketch what the homeomorphism does, then write a formula for it and prove it is a homeomorphism.

C3. Let X be the square $[0,1] \times[0,1]$ with the usual product topology and $f: X \rightarrow \mathbf{R}$ a continuous function so that $f(0,0)=-3$ and $f(1,1)=2$. Show that there is a point (c, d) in $(0,1) \times(0,1)$ (the "interior") such that $f(c, d)=0$.
$\mathbf{C 4}$. Give an example of a compact subset of $(\mathbf{R}, \mathcal{U})$ that is not a closed interval. Then show: if $A \subseteq(\mathbf{R}, \mathcal{U})$ is a compact and connected subset, then A is a closed interval.

