Introduction to Topology - Exam 2
MAT 516/616 , Fall 2013 - D. Ivanšić

Name:
Show all your work!

Do all the theory problems. Then do at least five problems, one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Let X be a topological space and $A \subseteq X$. Define the relative topology on A.

Theory 2. (3pts) Define the neighborhood of point.
Theory 3. (3pts) Let X, Y_{1}, \ldots, Y_{n} be topological spaces. State the theorem that gives a criterion for when a function $f: X \rightarrow Y_{1} \times \cdots \times Y_{n}$ is continuous, where $Y_{1} \times \cdots \times Y_{n}$ has the product topology.

Type A problems (5pts Each)

A1. Let $A=(-\infty, 7]$ be a subspace of $(\mathbf{R}, \mathcal{U})$. Which of the subsets of A are open in the relative topology: $(-1,3),(-\infty, 4],(0,7]$? Prove your answers.

A2. Let $X=\{a, b, c, d\}$ with the topology $\mathcal{T}=\{\emptyset,\{a, b\},\{c, d\},\{a, b, c, d\}\}$. Let $A=$ $\{a, b, c\}$. Find $\operatorname{Int}\{a, c\}$ and $\operatorname{Int}_{A}\{a, c\}$ and justify your answer.

A3. Let X be a topological space and let $A \subset X$ be a closed set. Show that $F \subseteq A$ is closed in A if and only if F is closed in X.

A4. Give an example of a function $f:(\mathbf{R}, \mathcal{H}) \rightarrow(\mathbf{R}, \mathcal{H})$ that is not continuous. Then give an example of a function that is not open.

A5. Let X be a topological space and define $f: X \times X \rightarrow X \times X$ as $f(x, y)=(y, x)$. Show that f is a homeomorphism. What is its inverse?

A6. Group the subspaces of \mathbf{R}^{2} into groups of homeomorphic spaces. Show spaces from one pair of groups are not homeomorphic.

Type B problems (8pts each)

B1. Let X and Y be topological spaces with bases \mathcal{B}_{1} and \mathcal{B}_{2}. Show that the collection $\mathcal{B}=\left\{B_{1} \times B_{2} \mid B_{1} \in \mathcal{B}_{1}, B_{2} \in \mathcal{B}_{2}\right\}$ is a base for the product space $X \times Y$.

B2. Let $X=\{a, b, c, d\}$ with the topology $\mathcal{T}=\{\emptyset,\{a\},\{a, b\},\{a, b, c, d\}\}$. Find all the homeomorphisms $f: X \rightarrow X$ and justify that your list is exhaustive.

B3. Let X have the discrete topology. Show that the product topology on $X \times X$ is the discrete topology (i.e. every subset of $X \times X$ is open in the product topology).

B4. Let X be a topological space, and let $X \times X$ have the product topology. Define $Z \subseteq X \times X$ to be the set $Z=\{(x, x) \in X \times X \mid x \in X\}$.
a) Draw the set Z for the closed interval $X=[1,2]$.
b) Show that X is homeomorphic to Z (Z has the relative topology).

B5. Let \mathbf{R} have the topology \mathcal{C}. Show with a picture that the multiplication function $m: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ is not continuous. (Hint: what are basic open sets in $\mathbf{R} \times \mathbf{R}$ like?)

Type C problems (12pts Each)

C1. Let X and Y be topological spaces, $A \subseteq X, B \subseteq Y$. Show that

$$
\operatorname{Bd}(A \times B)=(\operatorname{Bd} A \times \mathrm{Cl} B) \cup(\mathrm{Cl} A \times \operatorname{Bd} B)
$$

Illustrate for $X, Y=\mathbf{R}, A=(2,4), B=(1,3)$. (Hint: you will not need to go into definitions, just use established properties.)

C2. Let $X=\mathbf{R}^{2}-\{(0,0)\}$ and $Y=\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}+y^{2}>1\right\}$. Show that X and Y are homeomorphic. First sketch what the homeomorphism does, then write a formula for it and prove it is a homeomorphism.

