Do all the theory problems. Then do at least five problems, one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Let X be a set. Define what a topology on X is.

Theory 2. (3pts) Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Define Int A.

Theory 3. (3pts) Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. State the theorem that reveals the relationship between Int A, Bd A and Ext A.

TYPE A PROBLEMS (5PTS EACH)

A1. Let $X = \{a, b, c\}$. Which of the following collections is a topology on X?

 $\mathcal{T}_1 = \{\emptyset, \{a\}, \{a, b\}\}, \quad \mathcal{T}_2 = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}\}, \quad \mathcal{T}_3 = \{\emptyset, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$

A2. Let $A = (-2, 2) \cup \{5\}$ be a subset of the topological space $(\mathbf{R}, \mathcal{H})$. Find A', Int A and Bd A.

A3. Let $A = \mathbf{Q} \cap [0, 1]$ (all rationals between 0 and 1) be a subset of the topological space $(\mathbf{R}, \mathcal{U})$. Determine Cl A.

A4. Let A be a subset of a the topological space (X, \mathcal{T}) . Show that $\operatorname{Cl} A = \operatorname{Int} A$ if and only if A is both open and closed. (Hint: don't do anything complicated. Use properties of interior and closure.)

A5. Let (X, \mathcal{T}) be a topological space. Show that a subset $A \subseteq X$ is dense if and only if for every open set $U, U \cap A \neq \emptyset$.

A6. Let $f : (X, \mathcal{T}) \to (Y, \mathcal{S})$ be the function between topological spaces defined by $f(x) = y_0$, where y_0 is a fixed element of Y. Show that f is continuous.

A7. Let X be any set with three elements or more and \mathcal{B} be the collection of all two-element subsets of X. Show that \mathcal{B} is not a base for any topology.

TYPE B PROBLEMS (8PTS EACH)

B1. Let $f : \mathbf{R} \to \mathbf{R}$ be the function given below. Determine whether f is a) \mathcal{U} - \mathcal{U} continuous b) \mathcal{C} - \mathcal{C} continuous

$$f(x) = \begin{cases} x, & \text{if } x \ge 0\\ x - 1, & \text{if } x < 0. \end{cases}$$

B2. Show that the linear function $f : \mathbf{R} \to \mathbf{R}$, f(x) = mx + b, m > 0 is C-C continuous. How about when m = 0 or m < 0?

B3. For every subset A of a topological space X show that $\operatorname{Cl} A = A \cup \operatorname{Bd} A$.

B4. Show that the collection $\mathcal{B} = \{B_{\frac{1}{n}}(x) \mid x \in \mathbf{R}, n \in \mathbf{N}\}$ is a base for $(\mathbf{R}, \mathcal{U})$, where the balls are defined using the usual metric d(x, y) = |x - y|.

B5. Let $f : (X, \mathcal{T}) \to (Y, \mathcal{S})$ be a function between topological spaces and let \mathcal{B} be a base for \mathcal{S} . Show that f is continuous if and only if $f^{-1}(B)$ is open in X for every $B \in \mathcal{B}$.

B6. Show that the function $d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + 5|y_1 - y_2|$ is a metric on \mathbb{R}^2 . Determine what $B_1(0, 0)$ is.

B7. Show that the function d defined below is a metric on N (natural numbers).

$$d(m,n) = \begin{cases} 0, & \text{if } m = n \\ \frac{1}{2}, & \text{if } m \neq n \text{ and both are even or both are odd} \\ 1 & \text{if one is even and the other is odd.} \end{cases}$$

TYPE C PROBLEMS (12PTS EACH)

C1. A collection \mathcal{T} of subsets of the set of natural numbers **N** is defined as follows: $U \in \mathcal{T}$ provided that for every $m \in U$, all the divisors of m are also in U, where 1 is considered a divisor.

For example: $\{1, 2, 3, 4, 6, 12\}, \{1, 2, 4, 8\}, \{1, 7\}, \{3^k \mid k \ge 0\}$ are in \mathcal{T} ; $\{2, 5, 10\}, \{14, 28\}, \{1, 5, 6, 30\}$ are not in \mathcal{T} .

- a) Show that \mathcal{T} is a topology on **N**.
- b) Find Cl A, where $A = \{15\}$.

C2. For any set A in a topological space X, show that Cl(Int(Cl(Int A))) = Cl(Int A). Show also that Int(Cl(Int(Cl A))) = Int(Cl A). (Hint: don't do anything complicated. Use properties of interior and closure.)