Do all the theory problems. Then do at least five problems, one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Let X be a set. Define what a topology on X is.
Theory 2. (3pts) Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Define Int A.
Theory 3. (3pts) Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. State the theorem that reveals the relationship between $\operatorname{Int} A, \operatorname{Bd} A$ and $\operatorname{Ext} A$.

Type A problems (5pts Each)

A1. Let $X=\{a, b, c\}$. Which of the following collections is a topology on X ?
$\mathcal{T}_{1}=\{\emptyset,\{a\},\{a, b\}\}, \quad \mathcal{T}_{2}=\{\emptyset,\{a\},\{a, b\},\{a, b, c\}\}, \quad \mathcal{T}_{3}=\{\emptyset,\{a, b\},\{b, c\},\{a, c\},\{a, b, c\}\}$
A2. Let $A=(-2,2) \cup\{5\}$ be a subset of the topological space $(\mathbf{R}, \mathcal{H})$. Find A^{\prime}, $\operatorname{Int} A$ and Bd A.

A3. Let $A=\mathbf{Q} \cap[0,1]$ (all rationals between 0 and 1) be a subset of the topological space $(\mathbf{R}, \mathcal{U})$. Determine $\mathrm{Cl} A$.

A4. Let A be a subset of a the topological space (X, \mathcal{T}). Show that $\mathrm{Cl} A=\operatorname{Int} A$ if and only if A is both open and closed. (Hint: don't do anything complicated. Use properties of interior and closure.)

A5. Let (X, \mathcal{T}) be a topological space. Show that a subset $A \subseteq X$ is dense if and only if for every open set $U, U \cap A \neq \emptyset$.

A6. Let $f:(X, \mathcal{T}) \rightarrow(Y, \mathcal{S})$ be the function between topological spaces defined by $f(x)=y_{0}$, where y_{0} is a fixed element of Y. Show that f is continuous.

A7. Let X be any set with three elements or more and \mathcal{B} be the collection of all two-element subsets of X. Show that \mathcal{B} is not a base for any topology.

Type B problems (8pts Each)

B1. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the function given below. Determine whether f is
a) $\mathcal{U}-\mathcal{U}$ continuous
b) $\mathcal{C}-\mathcal{C}$ continuous

$$
f(x)= \begin{cases}x, & \text { if } x \geq 0 \\ x-1, & \text { if } x<0\end{cases}
$$

B2. Show that the linear function $f: \mathbf{R} \rightarrow \mathbf{R}, f(x)=m x+b, m>0$ is $\mathcal{C}-\mathcal{C}$ continuous. How about when $m=0$ or $m<0$?

B3. For every subset A of a topological space X show that $\mathrm{Cl} A=A \cup \operatorname{Bd} A$.
B4. Show that the collection $\mathcal{B}=\left\{\left.B_{\frac{1}{n}}(x) \right\rvert\, x \in \mathbf{R}, n \in \mathbf{N}\right\}$ is a base for $(\mathbf{R}, \mathcal{U})$, where the balls are defined using the usual metric $d(x, y)=|x-y|$.

B5. Let $f:(X, \mathcal{T}) \rightarrow(Y, \mathcal{S})$ be a function between topological spaces and let \mathcal{B} be a base for \mathcal{S}. Show that f is continuous if and only if $f^{-1}(B)$ is open in X for every $B \in \mathcal{B}$.

B6. Show that the function $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{1}-x_{2}\right|+5\left|y_{1}-y_{2}\right|$ is a metric on \mathbf{R}^{2}. Determine what $B_{1}(0,0)$ is.

B7. Show that the function d defined below is a metric on \mathbf{N} (natural numbers).
$d(m, n)= \begin{cases}0, & \text { if } m=n \\ \frac{1}{2}, & \text { if } m \neq n \text { and both are even or both are odd } \\ 1, & \text { if one is even and the other is odd. }\end{cases}$

Type C problems (12pts Each)

C1. A collection \mathcal{T} of subsets of the set of natural numbers \mathbf{N} is defined as follows: $U \in \mathcal{T}$ provided that for every $m \in U$, all the divisors of m are also in U, where 1 is considered a divisor.

For example: $\{1,2,3,4,6,12\},\{1,2,4,8\},\{1,7\},\left\{3^{k} \mid k \geq 0\right\}$ are in \mathcal{T};

$$
\{2,5,10\},\{14,28\},\{1,5,6,30\} \text { are not in } \overline{\mathcal{T}} .
$$

a) Show that \mathcal{T} is a topology on \mathbf{N}.
b) Find $\mathrm{Cl} A$, where $A=\{15\}$.

C2. For any set A in a topological space X, show that $\mathrm{Cl}(\operatorname{Int}(\operatorname{Cl}(\operatorname{Int} A)))=\mathrm{Cl}(\operatorname{Int} A)$. Show also that $\operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(\mathrm{Cl} A)))=\operatorname{Int}(\mathrm{Cl} A)$. (Hint: don't do anything complicated. Use properties of interior and closure.)

