Calculus 3 - Exam 4 MAT 309, Spring 2021 - D. Ivanšić

\qquad

1. (16pts) Let $\mathbf{F}(x, y)=\langle x-y, x+y\rangle$.
a) Sketch the vector field by evaluating it at 9 points (for example, a 3×3 grid).
b) Is F conservative? Now, can you justify it just by looking at the picture?
2. (20pts) In both cases set up and simplify the set-up, but do NOT evaluate the integral.
a) $\int_{C} \frac{x y z}{x^{2}+z^{2}} d s$, where C is the helix $x=3 t, y=\cos t, z=\sin t, 0 \leq t \leq 2 \pi$..
b) $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, if $\mathbf{F}(x, y)=\left\langle\frac{x-y}{x+y+4}, \frac{x+y}{x+y+4}\right\rangle$, where C is part of the circle $x^{2}+y^{2}=9$ from point $(0,3)$ to point $(-3,0)$, going the short way.
3. (16pts) Let $\mathbf{F}(x, y)=\langle 2 x, 8 y\rangle$. It is easy to see that $\mathbf{F}=\nabla f$, where $f(x, y)=x^{2}+4 y^{2}$. Apply the fundamental theorem for line integrals to:
a) Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, if C is the circle of radius 2 , centered at $(1,0)$.
b) Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, if C is a curve from $(0,0)$ to $(1,2)$. (Why is the curve not specified?)
c) Sketch the directions of the vector field \mathbf{F} by exploiting the function f. Very little computation is needed here.
4. (18pts) Consider the region D inside the triangle with vertices $(0,0),(2,0)$ and $(2,1)$.
a) Draw the region.
b) Use Green's theorem to find the line integral $\int_{C}(y \cos x-x y \sin x) d x+(x y+x \cos x) d y$, where C is the boundary of the region D, traversed counterclockwise. (Scary-looking, but it's not!)
5. (10pts) Suppose a particle moves in the velocity field $\mathbf{v}(x, y)=\left\langle x^{2}-y^{2}, x y\right\rangle$. If it is at point $(1,3)$ at time $t=2$, estimate its location at time $t=2.1$.
6. (20pts) Let $\mathbf{F}(x, y)=\left\langle\frac{2 x}{x^{2}+y}, e^{y}+\frac{1}{x^{2}+y}\right\rangle$.
a) Find the domain of f : it has two parts, and consider the part that contains $(0,1)$.
b) Compute $\frac{\partial Q}{\partial x}$ and $\frac{\partial P}{\partial y}$.
c) Is \mathbf{F} is conservative? Your justification should say something about the domain.
d) If the field is conservative, find its potential function.

Bonus. (10pts) Pictured is a spring 2020 friend from calculus 2 , the curve parametrized by $x(t)=t^{3}-12 t, y(t)=-t^{2}-2 t+8$. Use Green's theorem to find the area of the loop.

