Name:

Show all your work!

1. (16pts) Let D be the region in the first quadrant bounded by the curves $y = \sqrt{x}$, x = 0and y = 2.

a) Sketch the region D.

b) Set up $\iint_D \frac{1}{y^3 + 1} dA$ as iterated integrals in both orders of integration.

c) Evaluate the double integral using the easier order.

2. (12pts) Let D be the region that is under both curves $y = \sin x$ and $y = \cos x$ and above the x axis, and where $0 \le x \le \frac{\pi}{2}$. Set up $\iint_D x + y \, dA$, but do not evaluate the integral. Sketch the region of integration first. **3.** (20pts) Use polar coordinates to find $\iint_D \frac{x}{x^2 + y^2} dA$, if D is the region inside the circle $x^2 + y^2 = \frac{1}{4}$, and outside the cardioid $r = 1 + \cos \theta$. Sketch the region of integration first.

4. (18pts) Sketch the region E in the first octant $(x, y, z \ge 0)$ that is inside the cylinder $y^2 + z^2 = 4$ and "behind" the plane y = 3x. Then write the two iterated triple integrals that stand for $\iiint_E f \, dV$ which end in $dz \, dy \, dx$ and $dy \, dz \, dx$.

5. (20pts) Use cylindrical or spherical coordinates to evaluate $\iiint_E z \, dV$, if E is the region that is above the cone $z = \sqrt{3x^2 + 3y^2}$ and inside the sphere $x^2 + y^2 + z^2 = 9$. Sketch the region E.

6. (14pts) Use cylindrical coordinates to set up the integral for the volume of a spherical cap, the region inside the sphere $x^2 + y^2 + z^2 = a^2$ that is above the plane z = b, where a > 0 and $0 \le b \le a$. Do not evaluate the integral. Sketch the region E.

Bonus (10pts) Sketch the surfaces given by the equations:

$$z = \frac{1}{\sqrt{x^2 + y^2}} \qquad \qquad \rho = 1 + \sin \phi$$