Calculus 3 - Exam 3 MAT 309, Spring 2021 - D. Ivanšić

Show all your work!

1. (16pts) Let D be the region in the first quadrant bounded by the curves $y=\sqrt{x}, x=0$ and $y=2$.
a) Sketch the region D.
b) Set up $\iint_{D} \frac{1}{y^{3}+1} d A$ as iterated integrals in both orders of integration.
c) Evaluate the double integral using the easier order.
2. (12pts) Let D be the region that is under both curves $y=\sin x$ and $y=\cos x$ and above the x axis, and where $0 \leq x \leq \frac{\pi}{2}$. Set up $\iint_{D} x+y d A$, but do not evaluate the integral. Sketch the region of integration first.
3. (20pts) Use polar coordinates to find $\iint_{D} \frac{x}{x^{2}+y^{2}} d A$, if D is the region inside the circle $x^{2}+y^{2}=\frac{1}{4}$, and outside the cardioid $r=1+\cos \theta$. Sketch the region of integration first.
4. (18pts) Sketch the region E in the first octant $(x, y, z \geq 0)$ that is inside the cylinder $y^{2}+z^{2}=4$ and "behind" the plane $y=3 x$. Then write the two iterated triple integrals that stand for $\iiint_{E} f d V$ which end in $d z d y d x$ and $d y d z d x$.
5. (20pts) Use cylindrical or spherical coordinates to evaluate $\iiint_{E} z d V$, if E is the region that is above the cone $z=\sqrt{3 x^{2}+3 y^{2}}$ and inside the sphere $x^{2}+y^{2}+z^{2}=9$. Sketch the region E.
6. (14pts) Use cylindrical coordinates to set up the integral for the volume of a spherical cap, the region inside the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ that is above the plane $z=b$, where $a>0$ and $0 \leq b \leq a$. Do not evaluate the integral. Sketch the region E.

Bonus (10pts) Sketch the surfaces given by the equations:
$z=\frac{1}{\sqrt{x^{2}+y^{2}}}$

$$
\rho=1+\sin \phi
$$

